1
|
Gouveia AS, Codeço CT, Ferreira FADS, Cortés JJC, Luz SLB. Diflubenzuron larvicide auto-dissemination: A modeling study. Acta Trop 2024; 258:107325. [PMID: 39032848 DOI: 10.1016/j.actatropica.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Proposing substitutes for Pyriproxyfen (PPF) in the auto-dissemination strategy is essential to ensure the continuity of the strategy in the field, especially in the case of the emergence of populations resistant to this larvicide. One possible substitute among the compounds already in use in Brazil is the larvicide Diflubenzuron (DFB). The equation that defines the proportion of oviposition sites (habitats) contaminated by the auto-dissemination strategy was modified to account for the number of visits required to reach the necessary concentration of DFB for contamination, considering scenarios with varying numbers of oviposition sites and mosquito densities. The dissemination was evaluated in oviposition sites of 2 L, 1.5 L, 1 L, 0.5 L, 0.2 L, and 0.1 L. The minimum concentration of active ingredient (a.i) of DFB required for a commercial product to contaminate at least 50% of oviposition sites was also investigated, along with the impact of other vector control methods, such as the removal/destruction of oviposition sites and the use of insecticides to kill adult 'females, on the auto-dissemination approach. The use of pure DFB compounds enabled contamination efficiency of more than 50% in oviposition sites with a volume of less than 2 L in scenarios with fewer oviposition sites. On the other hand, with the use of the commonly used concentration of the product, similar efficacy was only achieved in oviposition sites of 0.1 L and 0.2 L in medium and high infestation scenarios. Strategies that reduce the number of available oviposition sites work synergistically with the auto-dissemination strategy, making it possible to use less concentrated products and contaminated sites of larger volume. The strategy proved to be resilient in situations of insecticide application according to the concentration of DFB used, abundance of females, and low number of oviposition sites. Increasing the number of dissemination traps on the field also contributes to better results, especially for oviposition sites of 0.5 L and 1 L. The results of the model obtained under the stipulated conditions provide further support for the potential use of DFB as a substitute for PPF in the auto-dissemination strategy.
Collapse
Affiliation(s)
- Ayrton Sena Gouveia
- Núcleo PReV Amazônia - Instituto Leônidas e Maria Deane - Fiocruz Amazônia; Programa de Computação Científica da Fiocruz - Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Cláudia Torres Codeço
- Programa de Computação Científica da Fiocruz - Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | - Sergio Luiz Bessa Luz
- Núcleo PReV Amazônia - Instituto Leônidas e Maria Deane - Fiocruz Amazônia; Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Li Y, Tan Z, Wang X, Hou L. Metabolic changes and potential biomarkers in " Candidatus Liberibacter solanacearum"-infected potato psyllids: implications for psyllid-pathogen interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1204305. [PMID: 37538064 PMCID: PMC10394617 DOI: 10.3389/fpls.2023.1204305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Psyllid yellows, vein-greening (VG), and zebra chip (ZC) diseases, which are primarily transmitted by potato psyllid (PoP) carrying Candidatus Liberibacter solanacearum (CLso), have caused significant losses in solanaceous crop production worldwide. Pathogens interact with their vectors at the organic and cellular levels, while the potential changes that may occur at the biochemical level are less well reported. In this study, the impact of CLso on the metabolism of PoP and the identification of biomarkers from infected psyllids were examined. Using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis, metabolomic changes in CLso-infected psyllids were compared to uninfected ones. A total of 34 metabolites were identified as potential biomarkers of CLso infection, which were primarily related to amino acid, carbohydrate, and lipid metabolism. The significant increase in glycerophospholipids is thought to be associated with CLso evading the insect vector's immune defense. Matrix-assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) was used to map the spatial distribution of these biomarkers, revealing that 15-keto-Prostaglandin E2 and alpha-D-Glucose were highly expressed in the abdomen of uninfected psyllids but down-regulated in infected psyllids. It is speculated that this down-regulation may be due to CLso evading surveillance by immune suppression in the PoP midgut. Overall, valuable biochemical information was provided, a theoretical basis for a better understanding of psyllid-pathogen interactions was offered, and the findings may aid in breaking the transmission cycle of these diseases.
Collapse
Affiliation(s)
- Yelin Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhiqing Tan
- School of Life Sciences, Guangzhou University, Guangzhou, China
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou University, Guangzhou, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Dieng H, McLean S, Stradling H, Morgan C, Gordon M, Ebanks W, Ebanks Z, Wheeler A. Aquatain® causes anti-oviposition, egg retention and oocyte melanization and triggers female death in Aedes aegypti. Parasit Vectors 2022; 15:100. [PMID: 35317811 PMCID: PMC8939118 DOI: 10.1186/s13071-022-05202-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
Background In arboviral disease systems where the virus can be transmitted from male to female vectors and from one generation to the next, targeting the female (especially when she is gravid) can help alter the persistence of the virus in nature and its transmission. A typical example is Aedes aegypti, which has become unmanageable due to the development of insecticide resistance. Despite evidence that monomolecular surface films prevent the selection of genetic resistance, their potential in Aedes vector control remains largely unexplored. Methods We examined the oviposition, egg retention, oocyte melanization, and female mortality of the Cayman Islands strain of Ae. aegypti, using choice (balanced and unbalanced) and no-choice bioassays involving Aquatain® Mosquito Formulation (AMF; Aquatain Products Pty Ltd.), a polydimethylsiloxane–based liquid used for mosquito control. Results When presented with similar opportunities to oviposit in two sites treated with AMF and two other sites with untreated water (control), egg deposition rates were significantly higher in the untreated water sites than in the AMF-treated sites (P < 0.05). We also observed a matching pattern of egg deposition preference in environments with more options in terms of AMF-treated sites. Females laid significantly more eggs when water was the only available medium than when all sites were treated with AMF (P < 0.05). Also, significantly more mature eggs were withheld in the AMF no-choice environment than in the no-choice test involving only water (P < 0.05). Internal oocyte melanization was not observed in females from the oviposition arenas with the lowest AMF presence (equal-choice and water-based no-choice); in contrast, this physiological response intensified as the number of AMF-treated sites increased. Female death occurred at high rates in AMF-treated environments, and this response increased with the increasing presence of such egg deposition sites. Conclusions This study demonstrated that AMF acted as a deterrent signal to ovipositing Ae. aegypti and as an indirect adulticide. These results suggest that AMF may be a promising control tool against the dengue vector, and this warrants further evaluation under field settings. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Hamady Dieng
- Mosquito Research and Control Unit (MRCU), George Town, Cayman Islands.
| | - Storm McLean
- The University College of the Cayman Islands, Olympic Way, George Town, Cayman Islands
| | | | - Cole Morgan
- The Forensic Department, Health Services Authority, George Town, Cayman Islands
| | - Malik Gordon
- The University College of the Cayman Islands, Olympic Way, George Town, Cayman Islands
| | - Whitney Ebanks
- Mosquito Research and Control Unit (MRCU), George Town, Cayman Islands
| | - Zoila Ebanks
- Mosquito Research and Control Unit (MRCU), George Town, Cayman Islands
| | - Alan Wheeler
- Mosquito Research and Control Unit (MRCU), George Town, Cayman Islands
| |
Collapse
|
4
|
Mohd Ngesom AM, Ahmad Razi A, Azizan NS, Wasi Ahmad N, Md Lasim A, Liang Y, Greenhalgh D, Min JCS, Sahani M, Hod R, Othman H. Evaluation of a mosquito home system for controlling Aedes aegypti. Parasit Vectors 2021; 14:413. [PMID: 34407881 PMCID: PMC8375193 DOI: 10.1186/s13071-021-04918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dengue is a significant public health issue that is caused by Aedes spp. mosquitoes. The current vector control methods are unable to effectively reduce Aedes populations and thus fail to decrease dengue transmission. Hence, there is an urgent need for new tools and strategies to reduce dengue transmission in a wide range of settings. In this study, the Mosquito Home System (MHS) and Mosquito Home Aqua (MHAQ) formulations were assessed as commercial autodissemination traps in laboratory and small-scale field trials. METHOD Multiple series of laboratory and small-scale field trials were performed to assess the efficacy of MHS and MHAQ exposed to Ae. aegypti. In the laboratory trials, various parameters such as fecundity, fertility, wing size, oviposition preferences, residual effects, and MHAQ transference to other containers through controlled experiments were tested. For small-scale field trials, the efficacy of the MHS and MHAQ approaches was determined to ascertain whether wild mosquitoes could transfer the MHAQ formulation from MHS stations to ovitraps. RESULTS The data revealed that Ae. aegypti was highly susceptible to low concentrations of MHAQ formulations and had a residual effect of up to 3 months, with MHAQ exposure affecting fecundity, fertility, and mosquito wing size. In the oviposition studies, gravid females strongly preferred the hay infusion compared to tap water and MHAQ during egg-laying in the laboratory. Nevertheless, the use of commercial MHAQ by MHS was highly attractive in field settings compared to conventional ovitraps among local Aedes spp. mosquitoes. In addition, MHAQ horizontal transfer activities in the laboratory and small-scale field trials were demonstrated through larval bioassays. These findings demonstrated the potential of MHAQ to be transferred to new containers in each study site. CONCLUSION This study provided proof of principle for the autodissemination of MHAQ. Through further refinement, this technique and device could become an effective oviposition trap and offer an alternative preventive tool for vector control management.
Collapse
Affiliation(s)
- Ahmad Mohiddin Mohd Ngesom
- Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Anis Ahmad Razi
- Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Nur Syahirah Azizan
- Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Nazni Wasi Ahmad
- Medical Entomology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, 40170 Shah Alam, Selangor Malaysia
| | - Asmalia Md Lasim
- Phytochemistry Unit, Herbal Medicine Research Centre (HMRC), Institute for Medical Research, National Institute of Health, Ministry of Health, 40170 Shah Alam, Selangor Malaysia
| | - Yanfeng Liang
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH UK
| | - David Greenhalgh
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH UK
| | - Jasmine Chia Siew Min
- Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mazrura Sahani
- Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, 50600 Cheras, Kuala Lumpur, Malaysia
| | - Hidayatulfathi Othman
- Center for Toxicology and Health Risk, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Hamaidia K, Soltani N. Methoxyfenozide, a Molting Hormone Agonist, Affects Autogeny Capacity, Oviposition, Fecundity, and Fertility in Culex pipiens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1004-1011. [PMID: 33247298 DOI: 10.1093/jme/tjaa260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/12/2023]
Abstract
The current study aimed to evaluate the effects of methoxyfenozide (RH-2485), an insect growth disrupter (IGD) belonging to molting hormone agonist class, against female adults of Culex pipiens L. under laboratory conditions. Lethal concentrations (LC50 = 24.54 µg/liter and LC90 = 70.79 µg/liter), previously determined against fourth instar larvae, were tested for adult female fertility, fecundity and oviposition after tarsal contact before mating and any bloodmeal. Methoxyfenozide was found to alter negatively their autogeny capacity and oviposition. A strong reduction of 56% and 72% (P < 0.001) in females' autogeny capacity was observed in both treated series, respectively. Alteration in oviposition were found to be higher with LC90 (OAI-LC90 = -0.62) than with the LC50 (OAI-LC50 = -0.42). Also fecundity and hatching rate (fertility) were significantly reduced in treated series as compared to controls. A significant reduction of 37.65 and 28.23% in fecundity and decrease of 56.85 and 71.87% in fertility were found, respectively in LC50 and LC90 treated series. Obtained data clearly demonstrated that methoxyfenozide have significant depressive effect on reproductive potential against medically important vector with minimizing ecotoxicological risks in mosquitoes management.
Collapse
Affiliation(s)
- Kaouther Hamaidia
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| | - Noureddine Soltani
- Laboratory of Applied Animal Biology, Faculty of Sciences, Department of Biology, University Badji Mokhtar of Annaba, Annaba, Algeria
| |
Collapse
|
6
|
Parthasarathy R, Palli SR. Stage-specific action of juvenile hormone analogs. JOURNAL OF PESTICIDE SCIENCE 2021; 46:16-22. [PMID: 33746542 PMCID: PMC7953018 DOI: 10.1584/jpestics.d20-084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The discovery of juvenile hormones (JH) and their synthetic analogs (JHA) generated excitement and hope that these compounds will replace first- and second-generation insecticides that have not so desirable environmental and human safety profiles. However, JHAs used commercially during the past four decades did not meet these expectations. The recent availability of advanced molecular and histological methods and the discovery of key players involved in JH action provided some insights into the functioning of JHA in a stage and species-specific manner. In this review, we will summarize recent findings and stage-specific action of JHA, focusing on three commercially used JHA, methoprene, hydroprene and pyriproxyfen and economically important pests, the red flour beetle, Tribolium castaneum, and the tobacco budworm, Heliothis virescens, and disease vector, the yellow fever mosquito, Aedes aegypti.
Collapse
Affiliation(s)
- Ramaseshadri Parthasarathy
- Department of Entomology, University of Kentucky, College of Agriculture, Food and Environment, Lexington, KY, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, College of Agriculture, Food and Environment, Lexington, KY, USA
| |
Collapse
|