1
|
Wang Z, Zhou Y, Tang F. RNAi-mediated silencing of transferrin promotes entomopathogens lethality in Odontotermes formosanus (Shiraki). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106149. [PMID: 39477602 DOI: 10.1016/j.pestbp.2024.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/15/2024] [Accepted: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Transferrin (Tsf) is a highly conserved multifunctional protein involved in insect physiology, defense and development that has been developed as a novel RNA interference (RNAi)-based target for pest control. The function study of the Tsf gene in Odontotermes formosanu (Shiraki) was evaluated for synergistic control of this agroforestry pest with Serratia marcescens (SM1), Bacillus thuringiensis (Bt) or Beauveria bassiana (Bb). The Tsf gene of O. formosanus was identified and characterized. Real-time fluorescent quantitative PCR (qPCR) analysis demonstrated that OfTsf was most highly expressed in the male dealate of O. formosanus, and OfTsf was highly expressed in the hemolymph. OfTsf expression was considerably elevated after SM1, Bt or Bb infection. Furthermore, dsOfTsf treatment was effective in increasing the virulence of entomopathogens to O. formosanus. In addition, OfTsf expression was markedly upregulated in O. formosanus fed with oxidative stress inducers; reactive oxygen species (ROS) levels were significantly increased after dsOfTsf treatment. Therefore, OfTsf gene played an important role in defending against entomopathogen infection and antioxidant stress. Most importantly, our work suggested OfTsf as a potential RNAi target for the control of O. formosanus.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Kong X, Guo X, Lin J, Liu H, Zhang H, Hu H, Shi W, Ji R, Jashenko R, Wang H. Transcriptomic analysis of the gonads of Locusta migratoria (Orthoptera: Acrididae) following infection with Paranosema locustae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-13. [PMID: 39465585 DOI: 10.1017/s0007485324000592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Paranosema locustae is an environmentally friendly parasitic predator with promising applications in locust control. In this study, transcriptome sequencing was conducted on gonadal tissues of Locusta migratoria males and females infected and uninfected with P. locustae at different developmental stages. A total of 18,635 differentially expressed genes (DEGs) were identified in female ovary tissue transcriptomes, with the highest number of DEGs observed at 1 day post-eclosion (7141). In male testis tissue transcriptomes, a total of 32,954 DEGs were identified, with the highest number observed at 9 days post-eclosion (11,245). Venn analysis revealed 25 common DEGs among female groups and 205 common DEGs among male groups. Gene ontology and Kyoto Encyclopaedia of Genes and Genome analyses indicated that DEGs were mainly enriched in basic metabolism such as amino acid metabolism, carbohydrate metabolism, lipid metabolism, and immune response processes. Protein-protein interaction analysis results indicated that L. migratoria regulates the expression of immune- and reproductive-related genes to meet the body's demands in different developmental stages after P. locustae infection. Immune- and reproductive-related genes in L. migratoria gonadal tissue were screened based on database annotation information and relevant literature. Genes such as Tsf, Hex1, Apolp-III, Serpin, Defense, Hsp70, Hsp90, JHBP, JHE, JHEH1, JHAMT, and VgR play important roles in the balance between immune response and reproduction in gonadal tissues. For transcriptome validation, Tsf, Hex1, and ApoLp-III were selected and verified by quantitative real-time polymerase chain reaction (qRT-PCR). Correlation analysis revealed that the qRT-PCR expression patterns were consistent with the RNA-Seq results. These findings contribute to further understanding the interaction mechanisms between locusts and P. locustae.
Collapse
Affiliation(s)
- Xuewei Kong
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Xinrui Guo
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Jun Lin
- Central for Prevention and Control of Prediction & Forecast Prevention of Locust and Rodent, Xinjiang Uygur Autonomous Region, China
| | - Hui Liu
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Huihui Zhang
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Hongxia Hu
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Wangpeng Shi
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Rong Ji
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| | - Roman Jashenko
- Ministry of Education and Science of the Republic of Kazakhstan, Almaty 050060, Kazakhstan
| | - Han Wang
- International Research Center for the Collaborative Containment of Cross-Border Pests in Central Asia, Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
- Tacheng, Research Field (Migratory Biology), Observation and Research Station of Xinjiang, Tacheng 834700, China
| |
Collapse
|
3
|
Zeng Z, Zou Y, Cai W, Lin FC, Wang H. Roles of CcDFR and CcOMT9 in the cyanidin biosynthesis and development of Cordyceps cicadae. Front Microbiol 2024; 15:1353710. [PMID: 38511011 PMCID: PMC10953825 DOI: 10.3389/fmicb.2024.1353710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Cordyceps cicadae is a traditional Chinese medicinal fungus known for its rich production of bioactive substances, particularly cyanidin, an anthocyanin commonly found in plants with notable anti-inflammatory, anti-tumor, antiviral, and antibacterial properties. This study revealed two key genes, CcDFR and CcOMT9, affecting cyanidin biosynthesis in C. cicadae. Methods The roles of these genes in cyanidin production, growth, and development were elucidated through the gene knockout method, phenotypic analysis, transcriptomics, and metabolomics. Results CcDFR deletion led to reduced cyanidin-3-O-glucoside (C3G), suppressed expression of cyanidin biosynthesis genes, impaired synnemata formation, decreased polysaccharide and adenosine content, and diminished chitinase activity. Meanwhile, the ΔCcOMT9 mutant exhibited an increase in C3G production, promoted expression of cyanidin biosynthesis genes and rising bioactive compounds, suppressed RNA methylation, and led to phenylalanine accumulation with no effect on fruiting body formation. Discussion We revealed a distinct anthocyanin biosynthesis pathway in C. cicadae and identified two genes with opposite functions, laying the foundation for future genetic modification of cyanidin-producing strains using modern biological techniques. This will shorten the production period of this valuable compound, facilitating the industrial-scale production of cyanidin.
Collapse
Affiliation(s)
- Zixuan Zeng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Zou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Zhang L, Tang F. Molecular mechanism of Serratia marcescens Bizio infection in Reticulitermes chinensis Snyder based on full-length SMRT transcriptome sequencing. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-13. [PMID: 38328866 DOI: 10.1017/s000748532300072x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reticulitermes chinensis Snyder is an important pest in forestry and construction and is widely distributed in China. We found that Serratia marcescens Bizio strain SM1 has insecticidal activity to R. chinensis, but the pathogenic mechanism of SM1 to R. chinensis is not clear. Therefore, full-length transcriptome sequencing was performed on R. chinensis infected with SM1 and the control group. A total of 230 differentially expressed genes were identified by comparing SM1 infection group and the control group, among which 103 were downregulated and 127 were upregulated. We found downregulated genes in nine metabolic pathway categories, among which carbohydrate metabolism had the most downregulated genes, followed by energy metabolism and amino acid metabolism. We also found that some downregulated genes were related to pattern recognition receptors, cellular immunity, and humoral immunity, indicating that R. chinensis immunity was negatively affected by SM1 infection. In addition, some genes in signal transduction and genetic information processing pathways were downregulated. In this study, high-throughput full-length transcriptome analysis was used to analyse the pathogenic mechanism of SM1 to R. chinensis. The results of this study provide useful information for exploring the relationship between SM1 and R. chinensis, and provide theoretical support for the future application of SM1 and the prevention and treatment of R. chinensis.
Collapse
Affiliation(s)
- Ling Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
5
|
Hu G, Zhou Y, Mou D, Qu J, Luo L, Duan L, Xu Z, Zou X. Filtration effect of Cordyceps chanhua mycoderm on bacteria and its transport function on nitrogen. Microbiol Spectr 2024; 12:e0117923. [PMID: 38099615 PMCID: PMC10783027 DOI: 10.1128/spectrum.01179-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/04/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE During the natural growth of Cordyceps chanhua, it will form a mycoderm structure specialized from hyphae. We found that the bacterial membrane of C. chanhua not only filters environmental bacteria but also absorbs and transports nitrogen elements inside and outside the body of C. chanhua. These findings are of great significance for understanding the stable mechanism of the internal microbial community maintained by C. chanhua and how C. chanhua maintains its own nutritional balance. In addition, this study also enriched our understanding of the differences in bacterial community composition and related bacterial community functions of C. chanhua at different growth stages, which is of great value for understanding the environmental adaptation mechanism, the element distribution network, and the changing process of symbiotic microbial system after Cordyceps fungi infected the host. At the same time, it can also provide a theoretical basis for some important ecological imitation cultivation technology of Cordyceps fungi.
Collapse
Affiliation(s)
- Gongping Hu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Yeming Zhou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Dan Mou
- Department of Humanities, Business College of Guizhou University of Finance and Economics, Qiannan, Guizhou, China
| | - Jiaojiao Qu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
- Tea College, Guizhou University, Guiyang, Guizhou, China
| | - Li Luo
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Lin Duan
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zhongshun Xu
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Li S, Hao Z, Xu H, Gao Y, Zhang M, Liang J, Dang X. Silencing β-1,3-glucan binding protein enhances the susceptibility of Plutella xylostella to entomopathogenic fungus Isaria cicadae. PEST MANAGEMENT SCIENCE 2022; 78:3117-3127. [PMID: 35442542 DOI: 10.1002/ps.6938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The diamondback moth, Plutella xylostella is a notorious pest of brassicaceae crops globally and has developed serious resistance to insecticide. Insects primarily rely on their innate immunity to defense against various pathogens. In this study, we investigated the immunological functions of a β-1,3-glucan binding protein from P. xylostella (PxβGBP) and evaluated its potential for biocontrolling P. xylostella. RESULTS The open reading frame of PxβGBP is 1422 bp encoding 473 amino acids residues. PxβGBP contained a CBM39 domain, a PAC domain and a GH16 domain and shared evolutionary conservation with other lepidoptera βGRPs. PxβGBP was strongly expressed in the third instar larvae and fat body. PxβGBP transcript levels increased significantly after the challenge with microbes, including Isaria cicadae, Escherichia coli and Staphylococcus aureus. PxβGBP was identified in P. xylostella larvae challenged by I cicadae, but not in the naïve insects. Recombinant PxβGBP can directly bind fungal and bacterial cells, and also agglutinate the cells of I cicadae, S. aureus and E coli in a zinc-dependent manner. Knockdown of PxβGBP via RNA interference significantly down-regulated the expression of antimicrobial peptide gene gloverin, and enhanced the susceptibility of P. xylostella to I. cicadae infection, leading to high mortality. CONCLUSION These results indicated that PxβGBP plays an important role in the immune response of P. xylostella against I. cicadae infection, and could serve as a potential novel target for pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuangshuang Li
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhongping Hao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huihui Xu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yan Gao
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingyu Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jian Liang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiangli Dang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Hrdina A, Iatsenko I. The roles of metals in insect-microbe interactions and immunity. CURRENT OPINION IN INSECT SCIENCE 2022; 49:71-77. [PMID: 34952239 DOI: 10.1016/j.cois.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Metal ions play essential roles in diverse physiological processes in insects, including immunity and interactions with microbes. Some, like iron, are essential nutrients and therefore are the subject of a tug-of-war between insects and microbes. Recent findings showed that the hypoferremic response mediated by Transferrin 1 is an essential defense mechanism against pathogens in insects. Transferrin 1 and the overall iron metabolism were also implicated in mediating interactions between insects and beneficial microbes. Other metals, like copper and zinc, can interfere with insect immune effectors, and either enhance (antimicrobial peptides) or reduce (reactive oxygen species) their activity. By covering recent advances in the field, this review emphasizes the importance of metals as essential mediators of insect-microbe interactions.
Collapse
Affiliation(s)
- Alexandra Hrdina
- Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany
| | - Igor Iatsenko
- Max Planck Institute for Infection Biology, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
8
|
Eleftherianos I, Zhang W, Heryanto C, Mohamed A, Contreras G, Tettamanti G, Wink M, Bassal T. Diversity of insect antimicrobial peptides and proteins - A functional perspective: A review. Int J Biol Macromol 2021; 191:277-287. [PMID: 34543628 DOI: 10.1016/j.ijbiomac.2021.09.082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/28/2022]
Abstract
The innate immune response of insects provides a robust line of defense against pathogenic microbes and eukaryotic parasites. It consists of two types of overlapping immune responses, named humoral and cellular, which share protective molecules and regulatory mechanisms that closely coordinate to prevent the spread and replication of pathogens within the compromised insect hemocoel. The major feature of the humoral part of the insect immune system involves the production and secretion of antimicrobial peptides from the fat body, which is considered analogous to adipose tissue and liver in vertebrates. Previous research has identified and characterized the nature of antimicrobial peptides that are directed against various targets during the different stages of infection. Here we review this information focusing mostly on the diversity and mode of action of these host defense components, and their critical contribution to maintaining host homeostasis. Extending this knowledge is paramount for understanding the evolution of innate immune function and the physiological balance required to provide sufficient protection to the host against external enemies while avoiding overactivation signaling events that would severely undermine physiological stability.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA.
| | - Wei Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Christa Heryanto
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, 3, Varese 21100, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-environmental Technology, University of Napoli Federico II, Via Università, 100, Portici 80055, Italy
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Taha Bassal
- Department of Entomology, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|