1
|
Duguma T, Melaku Y, Rentsch D, Terfa A, Shenkute K. In vitro antibacterial activities, DPPH radical scavenging, and molecular simulation of isolated compounds from the leaves of Rhus ruspolii. Z NATURFORSCH C 2024:znc-2024-0127. [PMID: 39300914 DOI: 10.1515/znc-2024-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Rhus ruspolii Engl. plant is traditionally used in Ethiopia to treat various diseases. However, the biological and phytochemical properties of the leaves are not well documented. Hence, this study aimed to isolate phytochemicals from R. ruspolii leaves and evaluate their antibacterial and DPPH radical scavenging activities. GC-MS analysis identified 16 compounds from combined fractions 6-10. Chromatographic separation and NMR analysis resulted in the isolation and characterization of palmitic acid (7), 3,4-dihydroxybenzoic acid (17), cupressuflavone (18), amentoflavone (19), shikimic acid (20), avicularin (21), and myricetin-3-O-5''-acetylarabinofuranoside (22). The inhibition zones of extracts (100 mg/mL) and isolated compounds (5 mg/mL) ranged from 8.33 ± 0.50 to 16.33 ± 0.47 mm against all evaluated bacteria. Of all isolated compounds, compounds 18 and 21 showed good activity against Gram-negative (supported by in silico molecular docking studies) and Gram-positive bacteria, respectively. The lowest (49.1 %) and the highest (91.3 %) DPPH radicals were inhibited by combined fractions 6-10 and compound 17, respectively, at 62.5 μg/mL. The SwissADME online analysis showed compounds 17 and 20 have good solubility and permeability. The Pro Tox 3.0 online analysis revealed none of the isolated compounds are fatal if swallowed. Therefore, the findings of this study support the traditional use of the plant for treating bacteria diseases.
Collapse
Affiliation(s)
- Tolessa Duguma
- Department of Applied Chemistry, 125545 Adama Science and Technology University , P.O. Box: 1888, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, 125545 Adama Science and Technology University , P.O. Box: 1888, Adama, Ethiopia
| | - Daniel Rentsch
- Laboratory for Functional Polymers, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland
| | - Akalu Terfa
- Department of Applied Chemistry, 125545 Adama Science and Technology University , P.O. Box: 1888, Adama, Ethiopia
| | - Kebede Shenkute
- Department of Applied Chemistry, 125545 Adama Science and Technology University , P.O. Box: 1888, Adama, Ethiopia
| |
Collapse
|
2
|
Orellana-Paucar AM. Turmeric Essential Oil Constituents as Potential Drug Candidates: A Comprehensive Overview of Their Individual Bioactivities. Molecules 2024; 29:4210. [PMID: 39275058 PMCID: PMC11397039 DOI: 10.3390/molecules29174210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
The therapeutic properties of turmeric essential oil have been extensively documented in both preclinical and clinical studies. Research indicates that its primary active compounds are promising candidates for addressing a wide range of pathologies, exhibiting anticancer, anti-inflammation, antioxidant, cardiovascular, hypoglycemic, dermatological, hepatoprotective, neurological, antiparasitic, antiviral, insecticidal, antifungal, and antivenom activities. While numerous compounds possess similar potential applications, the isolated active constituents of turmeric essential oil stand out due to their unique pharmacological profiles and absence of toxicity. This literature review meticulously compiles and analyzes the bioactivities of these constituents, emphasizing their molecular mechanisms of action, reported pharmacological effects, and potential therapeutic applications. The aim of this review is to provide a comprehensive synthesis of currently available clinical and preclinical findings related to individual turmeric essential oil compounds, while also identifying critical knowledge gaps. By summarizing these findings, this work encourages further research into the isolated compounds from turmeric oil as viable drug candidates, ultimately contributing to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Adriana Monserrath Orellana-Paucar
- Nutrition and Dietetics School, Faculty of Medical Sciences, University of Cuenca, Cuenca 010204, Ecuador
- Pharmacology and Nutritional Sciences Interdisciplinary Research Group, Faculty of Medical Sciences, University of Cuenca, Cuenca 010204, Ecuador
| |
Collapse
|
3
|
Subahar R, Aulia AP, Yulhasri Y, Felim RR, Susanto L, Winita R, El Bayani GF, Adugna T. Assessment of susceptible Culex quinquefasciatus larvae in Indonesia to different insecticides through metabolic enzymes and the histopathological midgut. Heliyon 2022; 8:e12234. [PMID: 36590519 PMCID: PMC9798163 DOI: 10.1016/j.heliyon.2022.e12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Filariasis and virus diseases that are transmitted by Culex quinquefasciatus are still a global health problem. Control of mosquito vectors with synthetic insecticides causes resistance to these mosquitoes to insecticides so that detection of susceptibility of the mosquito larval stage to insecticides is important for evaluating mosquito control programs. The aim of this study was to evaluate the susceptibility of wild-caught Cx. quinquefasciatus larvae in Jakarta, Indonesia, following exposure to temephos, malathion, cypermethrin, and deltamethrin; this was done by examining the detoxifying enzyme activities and histological damage to the larval midgut. Cx. quinquefasciatus larvae were collected from five fields in Jakarta and exposed for 24 h to temephos (1.25, 6.25, 31.25, and 156.25 ppm), malathion (0.5 ppm), cypermethrin (0.25 ppm), and deltamethrin (0.35 ppm). The larvae were then examined for acetylcholinesterase (AChE), glutathione S-transferase (GST), and oxidase activities using biochemical methods. Histological damage to the larval midgut was examined using routine histopathological methods and transmission electron microscopy (TEM). After 24 h, temephos and deltamethrin led to 100% mortality in the Cx. quinquefasciatus larvae. Temephos and malathion significantly inhibited the activity of AChE, while cypermethrin and deltamethrin significantly inhibited oxidase activity. Histologically, all insecticides damaged the larval midgut, as indicated by irregularities in the epithelial cell (ECs), microvilli (Mv), food boluses (FBs), peritrophic membranes (PMs), and cracked epithelial layers (Ep). The TEM findings confirmed that temephos and cypermethrin damage to the midgut ECs included damage to the cell membrane, nucleus, nucleoli, mitochondria, and other cell organelles. Overall, Cx. quinquefasciatus larvae in Jakarta were completely susceptible to temephos and deltamethrin. Synthetic insecticides may kill Cx. quinquefasciatus larvae through their actions on the metabolic enzyme activities and histopathological midgut.
Collapse
Affiliation(s)
- Rizal Subahar
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Corresponding author.
| | - Annisa Putri Aulia
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Yulhasri Yulhasri
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Ris Raihan Felim
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Lisawati Susanto
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Rawina Winita
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Gulshan Fahmi El Bayani
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | | |
Collapse
|
4
|
Trombin de Souza M, Trombin de Souza M, Bernardi D, Oliveira DDC, Morais MC, de Melo DJ, Richardi VS, Zarbin PHG, Zawadneak MAC. Essential Oil of Rosmarinus officinalis Ecotypes and Their Major Compounds: Insecticidal and Histological Assessment Against Drosophila suzukii and Their Impact on a Nontarget Parasitoid. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:955-966. [PMID: 34865075 DOI: 10.1093/jee/toab230] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Essential oils (EOs) produced by plants in the Lamiaceae family may provide new insecticidal molecules. Novel control compounds are needed to control Drosophila suzukii (Matsumura), a severe economic invasive pest of thin-skinned fruit crops. Thus, we characterized the main compounds of EOs from three rosemary Rosmarinus officinalis ecotypes (ECOs) and evaluated their toxicity to D. suzukii adults, deterrence of oviposition behavior, and histological alterations in larvae. Additionally, we analyzed the lethal and sublethal effect on the pupal parasitoid Trichopria anastrephae. The main compounds identified in the R. officinalis ECOs were α-pinene, camphor and 1,8-cineole. In bioassays via topical application or ingestion, ECOs and their major compounds showed high toxicity on D. suzukii adults and a lower concentration could kill 50% and 90% of flies compared to spinetoram. The dry residues of a-pinene, 1,8-cineole, and camphor provided a repellent effect by reducing D. suzukii oviposition by ~47% compared to untreated fruit. Histological sections of 3rd instar larval D. suzukii posttreatment revealed damage to the fat body, Malpighian tubules, brain, salivary gland, and midgut, which contributed to high larval and pupal mortality. Survival and parasitism by adult T. anastrephae were not affected. Thus, R. officinalis EO and their compounds have potential for developing novel insecticides to manage D. suzukii.
Collapse
Affiliation(s)
| | | | - Daniel Bernardi
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | - Daiana da Costa Oliveira
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | - Maíra Chagas Morais
- Department of Plant Protection, Federal University of Pelotas, Faculty of Agronomy, Pelotas, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
5
|
Matiadis D, Liggri PGV, Kritsi E, Tzioumaki N, Zoumpoulakis P, Papachristos DP, Balatsos G, Sagnou M, Michaelakis A. Curcumin Derivatives as Potential Mosquito Larvicidal Agents against Two Mosquito Vectors, Culex pipiens and Aedes albopictus. Int J Mol Sci 2021; 22:8915. [PMID: 34445622 PMCID: PMC8396198 DOI: 10.3390/ijms22168915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Vector-borne diseases have appeared or re-emerged in many Southern Europe countries making the transmission of infectious diseases by mosquitoes (vectors) one of the greatest worldwide health threats. Larvicides have been used extensively for the control of Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae) and Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquitoes in urban and semi-urban environments, causing the increasing resistance of mosquitoes to commercial insecticides. In this study, 27 curcuminoids and monocarbonyl curcumin derivatives were synthesised and evaluated as potential larvicidal agents against Cx. pipiens and Ae. albopictus. Most of the compounds were more effective against larvae of both mosquito species. Four of the tested compounds, curcumin, demethoxycurcumin, curcumin-BF2 complex and a monocarbonyl tetramethoxy curcumin derivative exhibited high activity against both species. In Cx. pipiens the recorded LC50 values were 6.0, 9.4, 5.0 and 32.5 ppm, respectively, whereas in Ae. albopictus they exhibited LC50 values of 9.2, 36.0, 5.5 and 23.6 ppm, respectively. No conclusive structure activity relationship was evident from the results and the variety of descriptors values generated in silico provided some insight to this end.
Collapse
Affiliation(s)
- Dimitris Matiadis
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece;
| | - Panagiota G. V. Liggri
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (P.G.V.L.); (N.T.)
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Niki Tzioumaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (P.G.V.L.); (N.T.)
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Dimitrios P. Papachristos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - George Balatsos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece;
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| |
Collapse
|