1
|
Mostafiz MM, Hwang HS, Kim JR, Kim BS, Lee KY. The Fumigation Toxicity of Three Benzoate Compounds against Phosphine-Susceptible and Phosphine-Resistant Strains of Rhyzopertha dominica and Sitophilus oryzae. INSECTS 2024; 15:477. [PMID: 39057210 PMCID: PMC11276816 DOI: 10.3390/insects15070477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Phosphine (PH3) has been widely used as a fumigant in food storage, but increasing PH3 resistance in major pests makes finding alternative fumigants urgent. Methyl benzoate (MBe), a volatile organic compound regarded to be a food-safe natural product, has recently demonstrated significant toxicity against a variety of insect pests. This study is the first evaluation of the fumigation toxicity of three benzoate compounds, MBe, vinyl benzoate, and ethyl benzoate, against PH3-susceptible and PH3-resistant strains of Rhyzopertha dominica and Sitophilus oryzae. All strains were exposed to the compounds at concentrations up to 20 µL/1.5 L air for 24 h. Compared to vinyl benzoate and ethyl benzoate, MBe induced higher mortality rates in all strains at all concentrations. When food was made available, the lethal median concentration for MBe was 10-17-fold higher than when tested without food. Moreover, no significant differences were observed between the responses of the PH3-susceptible and PH3-resistant strains to the compounds. Notably, S. oryzae was more susceptible to MBe. In laboratory settings, MBe successfully controlled PH3-resistant strains of R. dominica and S. oryzae, making it a viable option for PH3-resistance management. Thus, MBe might be suitable for food security programs as an environmentally benign alternative fumigant.
Collapse
Affiliation(s)
- Md Munir Mostafiz
- Department of Plant Medicine, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.M.M.); (H.-S.H.)
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hwal-Su Hwang
- Department of Plant Medicine, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.M.M.); (H.-S.H.)
- Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Ran Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency (APQA), Gimcheon 39660, Republic of Korea; (J.-R.K.); (B.-S.K.)
| | - Bong-Su Kim
- Plant Quarantine Technology Center, Animal and Plant Quarantine Agency (APQA), Gimcheon 39660, Republic of Korea; (J.-R.K.); (B.-S.K.)
| | - Kyeong-Yeoll Lee
- Department of Plant Medicine, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.M.M.); (H.-S.H.)
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Gale CC, Ferguson B, Rodriguez-Saona C, Shields VDC, Zhang A. Evaluation of a Push-Pull Strategy for Spotted-Wing Drosophila Management in Highbush Blueberry. INSECTS 2024; 15:47. [PMID: 38249053 PMCID: PMC10816925 DOI: 10.3390/insects15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
We evaluated a novel push-pull control strategy for protecting highbush blueberry, Vaccinium corymbosum, against spotted-wing drosophila (SWD), Drosophila suzukii. Methyl benzoate (MB) was used as the pushing agent and a previously tested SWD attractive blend of lure-scents was used as the pulling agent. MB dispensers (push) were hung in the canopy and lure-scent dispensers (pull) were hung in yellow jacket traps filled with soapy water around the blueberry bushes. Blueberries were sampled weekly, and any infestation was inspected by examining the breathing tubes of SWD eggs which protrude through the skin of infested fruit. The frequency of infestation, i.e., the proportion of berries infested with at least one egg, and the extent of infestation, i.e., the mean number of eggs in infested berries, were significantly reduced in treatments receiving MB dispensers as a pushing agent when infestation rates were very high. However, the mass trapping devices as a pulling agent did not provide comparable protection on their own and did not produce additive protection when used in combination with the MB dispensers in push-pull trials. We conclude that MB has the potential to be implemented as a spatial repellent/oviposition deterrent to reduce SWD damage in blueberry under field conditions and does not require the SWD attractant as a pulling agent to achieve crop protection.
Collapse
Affiliation(s)
- Cody C. Gale
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Beth Ferguson
- Phillip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ 08019, USA; (B.F.); (C.R.-S.)
| | - Cesar Rodriguez-Saona
- Phillip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ 08019, USA; (B.F.); (C.R.-S.)
| | | | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
3
|
Hassan E, Obaidoon Y, Mostafiz MM, Senior L. Effect of Plant Essential Oil Formulations on Bemisia tabaci MEAM1 (Gennadius) and Its Parasitoid Eretmocerus hayati (Zolnerowich and Rose). PLANTS (BASEL, SWITZERLAND) 2023; 12:4137. [PMID: 38140464 PMCID: PMC10747523 DOI: 10.3390/plants12244137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Silverleaf whitefly (SLW), Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), consists of genetically diverse species known to cause significant destruction in many crops around the world. Nowadays, synthetic insecticides are a key component in the management of this pest. However, they also come with disadvantages, such as environmental pollution, pest resistance and recurrence, and toxicity to pollinators and natural enemies. Essential oils from aromatic plants and biocontrol agents may provide a new and safe alternative to synthetic chemicals. In this study, we assessed the lethal impact of three new plant essential oil formulations (referred to as F1, F2, and F3) against the developmental stages of B. tabaci and its parasitoid Eretmocerus hayati (Zolnerowich and Rose) (Hymenoptera: Aphelinidae). The tested formulations consisted of combinations of mustard oil and different surfactants. The formulations were effective against the eggs and nymphal stages of B. tabaci. At the highest concentration assessed (1.23%), F1 was the most effective formulation against the eggs, resulting in 85% mortality, whereas F2 was most effective against the nymphs (92.5% and 88.3% mortality for the young and old nymphs, respectively). However, adult mortality rates were below 40% for all the tested formulations. The range of median lethal concentration (LC50) values was between 0.65 and 1.05% for B. tabaci. The side effects of the three formulations were assessed against E. hayati, treated as parasitized nymphs of B. tabaci. At the highest tested concentration (1.23%), F2 and F3 resulted in 80% and 70% mortality of the parasitoids, respectively (classified as moderately or slightly harmful according to the IOBC), whereas F1 resulted in 17.5% mortality. As F1 was effective against SLW with minimal effects on the parasitoid, it is the most suitable formulation of those tested for use in an integrated pest management (IPM) program targeting the younger life stages of B. tabaci.
Collapse
Affiliation(s)
- Errol Hassan
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4343, Australia (Y.O.)
| | - Yasir Obaidoon
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4343, Australia (Y.O.)
| | - Md Munir Mostafiz
- Agricultural Science and Technology Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Lara Senior
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| |
Collapse
|
4
|
Schmidt-Jeffris RA. Non-target pesticide impacts on pest natural enemies: Progress and gaps in current knowledge. CURRENT OPINION IN INSECT SCIENCE 2023:101056. [PMID: 37207833 DOI: 10.1016/j.cois.2023.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Avoiding pesticide non-target effects on natural enemies is a cornerstone of conservation biological control. Recent advances in this field have included increased examination of nuanced sublethal effects, including microbiome changes. There is an interest in lifetable-based approaches, while also simplifying results to reduce the amount of information a grower needs to interpret to make a judicious application decision. Newer pesticides are showing promise for selectivity to both natural enemies and humans. Major research gaps still remain, with few published studies on ground-dwelling natural enemies, herbicides, adjuvants, or pesticide mixes. Translating the results of laboratory assays to field-level effects remains a major challenge. Field studies examining entire management programs and meta-analyses of laboratory studies may begin to address this issue.
Collapse
Affiliation(s)
- Rebecca A Schmidt-Jeffris
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA 98951, United States.
| |
Collapse
|
5
|
Mostafiz MM, Güncan A, Lee KY. Evaluation of Lethal and Sublethal Effects of Methyl Benzoate on the Generalist Predator Orius laevigatus (Fieber). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1911-1920. [PMID: 36124760 DOI: 10.1093/jee/toac137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Methyl benzoate (MBe), a volatile organic molecule, has been shown to have insecticidal effects on a variety of agricultural, stored products, and urban arthropod pests in recent investigations. However, the toxicity of MBe against nontarget organisms has rarely been investigated. This study investigated the lethal and sublethal effects of MBe on the generalist predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) via different exposure routes. This species is an important natural enemy of thrips, aphids, and mites in biological control programs globally. Acute toxicity bioassays conducted on O. laevigatus showed that the lethal median concentration (LC50) values of MBe for topical and residual toxicity were 0.73 and 0.94%, respectively, after 24 hr of exposure. Importantly, a sublethal concentration of MBe (LC30 = 0.51%) did not affect the survival and reproduction of O. laevigatus. In addition, prey consumption by O. laevigatus under different exposure conditions with varying densities of Aphis gossypii (Glover) (Hemiptera: Aphididae) adults demonstrated a good fit for a Type II functional response. The sublethal concentration of MBe did not affect the attack rate and handling time of O. laevigatus compared to untreated insects, nor did it affect the longevity and fecundity of O. laevigatus females. Thus, according to the International Organization for Biological Control, the sublethal MBe concentration for O. laevigatus is categorized as harmless and may be used in conjunction with this predator species for integrated control of many agricultural insect pests.
Collapse
Affiliation(s)
- Md Munir Mostafiz
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ali Güncan
- Ordu University, Faculty of Agriculture, Department of Plant Protection, 52200, Ordu, Turkey
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Sustainable Agriculture Research Center, Kyungpook National University, Gunwi, 39061, Republic of Korea
| |
Collapse
|
6
|
Kang Y, Koo HN, Kim HK, Kim GH. Analysis of the Feeding Behavior and Life Table of Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae) under Sublethal Concentrations of Imidacloprid and Sulfoxaflor. INSECTS 2022; 13:1130. [PMID: 36555040 PMCID: PMC9786143 DOI: 10.3390/insects13121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The brown planthopper (BPH) Nilaparvata lugens and white-backed planthopper (WBPH) Sogatella furcifera are serious rice insect pests that cannot overwinter in Korea and migrate from southeast Asian countries and China. In this study, we investigated the sublethal effects of imidacloprid and sulfoxaflor on the biological parameters and feeding behavior of planthoppers. These sublethal concentrations significantly decreased the net reproduction rate (R0), the intrinsic rate of increase (rm), and the mean generation time (T). For BPHs, the total durations of nonpenetration (NP) waveform by imidacloprid (LC10 = 164.74 and LC30 = 176.48 min) and sulfoxaflor (LC10 = 235.57 and LC30 = 226.93 min) were significantly different from those in the control group (52.73 min). In addition, on WBPHs, the total durations of NP waveform by imidacloprid (LC10 = 203.69 and LC30 = 169.9 min) and sulfoxaflor (LC10 = 134.02 and LC30 = 252.14 min) were significantly different from those in the control group (45.18 min). Moreover, the LC10 and LC30 of these insecticides significantly decreased the phloem feeding time. In conclusion, imidacloprid had a better effect on the inhibition of feeding of the WBPH, and sulfoxaflor showed a better effect on the inhibition of feeding of the BPH. Therefore, it is suggested that treatment with sublethal concentrations of the above insecticides will reduce the feeding of BPHs and WBPHs on rice phloem.
Collapse
|
7
|
Sun C, Li S, Wang K, Yin X, Wang Y, Du M, Wei J, An S. Cyclosporin A as a Potential Insecticide to Control the Asian Corn Borer Ostrinia furnacalis Guenée (Lepidoptera: Pyralidae). INSECTS 2022; 13:965. [PMID: 36292912 PMCID: PMC9604310 DOI: 10.3390/insects13100965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The long-term use of chemical insecticides has caused serious problems of insect resistance and environmental pollution; new insecticides are needed to solve this problem. Cyclosporin A (CsA) is a polypeptide produced by many fungi, which is used to prevent or treat immune rejection during organ transplantation. However, little is known about the utility of CsA as an insecticide. Therefore, this study evaluated the insecticidal activity of CsA using Ostrinia furnacalis as a model. The results demonstrated that CsA was toxic to O. furnacalis with LC50 values of 113.02 μg/g and 198.70 μg/g for newly hatched neonates and newly molted third-instar larvae, respectively. Furthermore, CsA treatment had sublethal effects on the development of O. furnacalis, and significantly reduced the fecundity of adults; this suggests that CsA has great potential to suppress O. furnacalis populations. Further analysis revealed that CsA suppressed calcineurin activity in larvae. CsA had independent or synergistic toxic effects on O. furnacalis when combined with β-cypermethrin, indoxacarb, emamectin benzoate, azadirachtin, and the Bacillus thuringiensis toxin Cry1Ac, which suggests that CsA can help prevent or manage resistance. Our study provides detailed information on the potential of CsA as an insecticide for controlling lepidopterans.
Collapse
Affiliation(s)
- Chengxian Sun
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shunjia Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Wang
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinming Yin
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmei Wang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengfang Du
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Jizhen Wei
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
8
|
Topical Collection: Natural Enemies and Biological Control of Plant Pests. INSECTS 2022; 13:insects13050421. [PMID: 35621757 PMCID: PMC9144977 DOI: 10.3390/insects13050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022]
Abstract
Natural enemies have an extensive history as biological control agents against crop pests worldwide [...]
Collapse
|
9
|
Mostafiz MM, Ryu J, Akintola AA, Choi KS, Hwang UW, Hassan E, Lee KY. Larvicidal Activity of Methyl Benzoate, a Volatile Organic Compound, Against the Mosquitoes Aedes albopictus and Culex pipiens (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:788-794. [PMID: 35043202 DOI: 10.1093/jme/tjab230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 06/14/2023]
Abstract
Methyl benzoate (MBe) is a volatile organic molecule found in various plants; it is used as an insect semiochemical. MBe also has a biorational insecticidal effect against various agricultural and urban arthropod pests. The present study was the first to assess the larvicidal potential of MBe against fourth-instar larvae of the mosquitoes Aedes albopictus (Skuse) and Culex pipiens (L.). A positive association was observed between MBe concentrations and larval mortality in both the species. The highest mortality recorded was 100% for Ae. albopictus and 56% for Cx. pipiens after 24 h of exposure to 200 ppm MBe. The lethal median concentration (LC50) values of MBe against fourth-instar larvae of Ae. albopictus and Cx. pipiens were 61 ppm and 185 ppm, respectively. These results suggest that MBe has great potential for use as an environmentally friendly larvicidal agent for mosquito control.
Collapse
Affiliation(s)
- Md Munir Mostafiz
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Jihun Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | | | - Kwang Shik Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Korea
| | - Ui Wook Hwang
- Biomedical Convergence Science and Technology, Kyungpook National University, Daegu, Korea
| | - Errol Hassan
- School of Agriculture and Food Sciences, The University of Queensland Gatton, Queensland, Australia
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Korea
| |
Collapse
|
10
|
Hassan E, Mostafiz MM, Iramu ET, George D, Lee KY. Evaluation of the Effect of Fungatol and Gamma-T-ol on the Emergence and Adult Parasitoid Survival of Mummies of Cotton Aphids Parasitized by Aphidius colemani. INSECTS 2021; 13:insects13010038. [PMID: 35055883 PMCID: PMC8778611 DOI: 10.3390/insects13010038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Biological control can be used as an alternative control measure to reduce pesticide resistance. Unfortunately, many biological control agents, such as natural enemies of pests, are susceptible to a broad spectrum of pesticides. This creates a potential problem when these two components are utilized together. Therefore, it is necessary to find alternatives that are not harmful to natural enemies but also have the potential to replace synthetic pesticides. Essential oils (EOs) are widely used in crop protection and organic agriculture. The EO formulations evaluated in this study are new botanical pesticides that play an important role in agriculture. EOs are available as an alternative to synthetic pesticides. Two blends (Fungatol and Gamma-T-ol) are mostly composed of Alpha Tops, and Gamma Tops were assessed for their effects on the aphid parasitoid Aphidius colemani in laboratory and glasshouse trials. According to the International Organization for Biological Control (IOBC) classification, they were found to be safe or only slightly toxic, making them potential candidates for introduction into an integrated pest control program for aphids. Abstract Beneficial insects play a major role in controlling pest populations. In sustainable agricultural production systems, control methods compatible with integrated pest management (IPM) are preferred over broad-spectrum pesticides. EOs from aromatic plants may provide a new and safe alternative to synthetic chemicals. In this research, the efficacy of Fungatol, Gamma-T-ol, Fungatol plus neem, and Gamma-T-ol plus neem was evaluated against Aphidius colemani Viereck (Hymenoptera: Braconidae; Aphidiidae), the parasitoid of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). Under laboratory and greenhouse conditions, five different concentrations of each formulation were applied to parasitized mummies and adult parasitoids. Results for parasitoid emergence from aphid mummies sprayed with different concentrations of Fungatol, Gamma-T-ol, Fungatol plus neem, and Gamma-T-ol plus neem in the laboratory and glasshouse showed that the formulations did not adversely affect adult emergence as rates above 60% were observed. For residual toxicity tests done by exposing adult parasitoids to a fresh, dry biopesticide film sprayed on glass plates, less than 20% mortality was observed after 48 h of exposure. Adult longevity tests revealed that the highest concentrations of some of the formulations evaluated were slightly toxic to A. colemani. According to the IOBC rating, our results indicated that most of the tested concentrations for each formulation were harmless to A. colemani. Based on the above results, it may be proposed that the formulations evaluated in this study are potential botanical pesticide candidates for incorporation into an IPM program.
Collapse
Affiliation(s)
- Errol Hassan
- School of Agriculture and Food Sciences, The University of Queensland Gatton, Lawes, QLD 4343, Australia;
- Correspondence: ; Tel.: +61-(0)7-5460-1285
| | - Md Munir Mostafiz
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea; (M.M.M.); (K.-Y.L.)
| | | | - Doug George
- School of Agriculture and Food Sciences, The University of Queensland Gatton, Lawes, QLD 4343, Australia;
| | - Kyeong-Yeoll Lee
- Division of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea; (M.M.M.); (K.-Y.L.)
- Sustainable Agriculture Research Center, Kyungpook National University, Daegu 39061, Korea
| |
Collapse
|
11
|
Risk Assessment of Insecticides Used in Tomato to Control Whitefly on the Predator Macrolophus basicornis (Hemiptera: Miridae). INSECTS 2021; 12:insects12121092. [PMID: 34940180 PMCID: PMC8709244 DOI: 10.3390/insects12121092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The whitefly Bemisia tabaci is a problem in tomato crops worldwide. The use of chemicals is one method to control this pest. Predators from the family Miridae have been used in Europe as biological control agents. We tested the insecticides most often used to control B. tabaci in tomato fields in Brazil for compatibility with the native Brazilian mirid Macrolophus basicornis. The results showed that regarding lethality, buprofezin, cyantraniliprole and spiromesifen were reduced-risk insecticides. Acetamiprid, bifenthrin, etofenprox + acetamiprid and pyriproxyfen + acetamiprid were considered broad-spectrum insecticides. The insecticides were also tested to be classified ecologically and were found to be safe, except for acetamiprid that was moderately toxic. Overall, our findings indicated that it is possible to use M. basicornis as a biological agent to control B. tabaci in tomato crops by means of pest management strategies that are compatible with agrochemicals in current use. Abstract The generalist mirid predator Macrolophus basicornis may contribute to Integrated Pest Management (IPM) of Bemisia tabaci in tomato crops. It is important to know the compatibility of the chemicals used to control this pest with this promising biological control agent. Seven insecticides were tested to investigate their toxicity to the predator. For four of the products, the LC50 for adults were determined. Buprofezin, cyantraniliprole and spiromesifen did not cause lethality and were classified as harmless. Acetamiprid, bifenthrin, etofenprox + acetamiprid and pyriproxyfen + acetamiprid caused acute toxicity and were classified as harmful. LT50 for all harmful insecticides were relatively low, ranging from 1.8 to 3.2 days. Moreover, these four insecticides have low LC50, with acetamiprid (0.26 mg a.i. L−1) as the lowest, followed by bifenthrin (0.38 mg a.i. L−1), etofenprox + acetamiprid (4.80 mg a.i. L−1) and pyriproxyfen + acetamiprid (8.71 mg a.i. L−1). However, the calculated risk quotient (RQ) values demonstrated that these insecticides were mostly ecologically safe for this predator, except for acetamiprid, classified as slightly to moderately toxic. The present study can contribute to the use of M. basicornis as a biological control agent on tomato crops and to compatible use with the insecticides tested, according to IPM strategies.
Collapse
|
12
|
Effects of Sublethal Doses of Methyl Benzoate on the Life History Traits and Acetylcholinesterase (AChE) Activity of Aphis gossypii. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Safer alternatives to synthetic pesticides are essential for sustainable agriculture. Methyl benzoate (MB) is a volatile essential oil found in several plants. Recent reports of the toxicity of MB to arthropod pests suggest that MB may be a useful alternative insecticide. The present study assessed the effects of a sublethal concentration of MB (LC30, 0.22%) on the life history and reproductive characteristics of the cotton aphid, Aphis gossypii Glover, in both a treated parental generation (F0) and untreated progeny (F1). MB treatment significantly decreased longevity and fecundity in both the F0 and F1 generations, and prolonged the developmental duration of each immature instar of the F1 generations, compared with controls. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) of the F1 generation were significantly reduced, compared to controls. The mode of action of MB is not known, but in aphids treated with LC30 MB, the activity of the enzyme acetylcholinesterase (AChE) decreased by more than 65%, compared with untreated controls. AChE activity was rapidly inhibited within 1 h, and remained inhibited for 6 h after in vivo exposure to MB. Moreover, molecular docking analysis revealed that MB had a strong affinity with the catalytic site of AChE, with a binding energy value of −6.2 kcal/mole. Our results suggest that MB targets AChE, and that a sublethal dose of MB can have adverse transgenerational effects on cotton aphids.
Collapse
|