1
|
Lu RX, Bhatia S, Simone-Finstrom M, Rueppell O. Quantitative trait loci mapping for survival of virus infection and virus levels in honey bees. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105534. [PMID: 38036199 DOI: 10.1016/j.meegid.2023.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Israeli acute paralysis virus (IAPV) is a highly virulent, Varroa-vectored virus that is of global concern for honey bee health. Little is known about the genetic basis of honey bees to withstand infection with IAPV or other viruses. We set up and analyzed a backcross between preselected honey bee colonies of low and high IAPV susceptibility to identify quantitative trait loci (QTL) associated with IAPV susceptibility. Experimentally inoculated adult worker bees were surveyed for survival and selectively sampled for QTL analysis based on SNPs identified by whole-genome resequencing and composite interval mapping. Additionally, natural titers of other viruses were quantified in the abdomen of these workers via qPCR and also used for QTL mapping. In addition to the full dataset, we analyzed distinct subpopulations of susceptible and non-susceptible workers separately. These subpopulations are distinguished by a single, suggestive QTL on chromosome 6, but we identified numerous other QTL for different abdominal virus titers, particularly in the subpopulation that was not susceptible to IAPV. The pronounced QTL differences between the susceptible and non-susceptible subpopulations indicate either an interaction between IAPV infection and the bees' interaction with other viruses or heterogeneity among workers of a single cohort that manifests itself as IAPV susceptibility and results in distinct subgroups that differ in their interaction with other viruses. Furthermore, our results indicate that low susceptibility of honey bees to viruses can be caused by both, virus tolerance and virus resistance. QTL were partially overlapping among different viruses, indicating a mixture of shared and specific processes that control viruses. Some functional candidate genes are located in the QTL intervals, but their genomic co-localization with numerous genes of unknown function delegates any definite characterization of the underlying molecular mechanisms to future studies.
Collapse
Affiliation(s)
- Robert X Lu
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada
| | - Shilpi Bhatia
- Department of Biology, North Carolina Agricultural and Technical State University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, 116 Street & 85 Avenue, Edmonton, Alberta, T6G 2E9, Canada; Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA.
| |
Collapse
|
2
|
Mojtaba M, Hossein M, Masoumeh B. Evaluation of Molecular Epidemiology of IAPV in Several Regions of Iran. ARCHIVES OF RAZI INSTITUTE 2023; 78:1572-1578. [PMID: 38590666 PMCID: PMC10998935 DOI: 10.22092/ari.2023.78.5.1572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 04/10/2024]
Abstract
In this study, the Israeli acute paralysis virus (IAPV), a single-stranded RNA virus, was investigated in honey bee colonies, which had a history of mortality, population decline, and parasitic diseases. Samples (adult honey bees) were collected from 328 apiaries from three provinces (Tehran, Alborz, and Mazandaran) of Iran to detect IAPV. After sample preparation, RNA was extracted and cDNA was synthesized to perform the reverse transcription polymerase chain reaction (RT-PCR) method using a PCR primer pair, and a 185 bp fragment was amplified. The results showed that out of 328 samples, 103 (31.4%) samples were positive, which were from Mazandaran (14.33%), Tehran (8.84%), and Alborz (8.23%) provinces. Subsequently, some of the positive samples were sequenced and a phylogenetic tree was drawn. The phylogenetic tree showed that the virus isolates were divided into two distinct groups, including one group that had a high similarity to the European acute bee paralysis virus (ABPV) and one group that had a high similarity to the Kashmir bee virus. In addition, the sequences of the samples in three regions were separated in a node from the strains of ABPV from Eastern Europe. Since the length of the branch between the Iranian sequences and the different strains of ABPV from Eastern Europe was short, it can be assumed that the sequences from Iran have a common ancestor with the mentioned strains of ABPV from Eastern Europe.
Collapse
Affiliation(s)
- Moharrami Mojtaba
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Modirrousta Hossein
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Bagheri Masoumeh
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
3
|
Virus Prevalence in Egg Samples Collected from Naturally Selected and Traditionally Managed Honey Bee Colonies across Europe. Viruses 2022; 14:v14112442. [PMID: 36366540 PMCID: PMC9692946 DOI: 10.3390/v14112442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Monitoring virus infections can be an important selection tool in honey bee breeding. A recent study pointed towards an association between the virus-free status of eggs and an increased virus resistance to deformed wing virus (DWV) at the colony level. In this study, eggs from both naturally surviving and traditionally managed colonies from across Europe were screened for the prevalence of different viruses. Screenings were performed using the phenotyping protocol of the 'suppressed in ovo virus infection' trait but with qPCR instead of end-point PCR and a primer set that covers all DWV genotypes. Of the 213 screened samples, 109 were infected with DWV, 54 were infected with black queen cell virus (BQCV), 3 were infected with the sacbrood virus, and 2 were infected with the acute bee paralyses virus. It was demonstrated that incidences of the vertical transmission of DWV were more frequent in naturally surviving than in traditionally managed colonies, although the virus loads in the eggs remained the same. When comparing virus infections with queen age, older queens showed significantly lower infection loads of DWV in both traditionally managed and naturally surviving colonies, as well as reduced DWV infection frequencies in traditionally managed colonies. We determined that the detection frequencies of DWV and BQCV in honey bee eggs were lower in samples obtained in the spring than in those collected in the summer, indicating that vertical transmission may be lower in spring. Together, these patterns in vertical transmission show that honey bee queens have the potential to reduce the degree of vertical transmission over time.
Collapse
|
4
|
Jack CJ, Ellis JD. Integrated Pest Management Control of Varroa destructor (Acari: Varroidae), the Most Damaging Pest of (Apis mellifera L. (Hymenoptera: Apidae)) Colonies. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6. [PMID: 34536080 PMCID: PMC8449538 DOI: 10.1093/jisesa/ieab058] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 05/13/2023]
Abstract
Varroa destructor is among the greatest biological threats to western honey bee (Apis mellifera L.) health worldwide. Beekeepers routinely use chemical treatments to control this parasite, though overuse and mismanagement of these treatments have led to widespread resistance in Varroa populations. Integrated Pest Management (IPM) is an ecologically based, sustainable approach to pest management that relies on a combination of control tactics that minimize environmental impacts. Herein, we provide an in-depth review of the components of IPM in a Varroa control context. These include determining economic thresholds for the mite, identification of and monitoring for Varroa, prevention strategies, and risk conscious treatments. Furthermore, we provide a detailed review of cultural, mechanical, biological, and chemical control strategies, both longstanding and emerging, used against Varroa globally. For each control type, we describe all available treatments, their efficacies against Varroa as described in the primary scientific literature, and the obstacles to their adoption. Unfortunately, reliable IPM protocols do not exist for Varroa due to the complex biology of the mite and strong reliance on chemical control by beekeepers. To encourage beekeeper adoption, a successful IPM approach to Varroa control in managed colonies must be an improvement over conventional control methods and include cost-effective treatments that can be employed readily by beekeepers. It is our intention to provide the most thorough review of Varroa control options available, ultimately framing our discussion within the context of IPM. We hope this article is a call-to-arms against the most damaging pest managed honey bee colonies face worldwide.
Collapse
Affiliation(s)
- Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | - James D Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
McMenamin AJ, Parekh F, Lawrence V, Flenniken ML. Investigating Virus-Host Interactions in Cultured Primary Honey Bee Cells. INSECTS 2021; 12:653. [PMID: 34357313 PMCID: PMC8329929 DOI: 10.3390/insects12070653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Honey bee (Apis mellifera) health is impacted by viral infections at the colony, individual bee, and cellular levels. To investigate honey bee antiviral defense mechanisms at the cellular level we further developed the use of cultured primary cells, derived from either larvae or pupae, and demonstrated that these cells could be infected with a panel of viruses, including common honey bee infecting viruses (i.e., sacbrood virus (SBV) and deformed wing virus (DWV)) and an insect model virus, Flock House virus (FHV). Virus abundances were quantified over the course of infection. The production of infectious virions in cultured honey bee pupal cells was demonstrated by determining that naïve cells became infected after the transfer of deformed wing virus or Flock House virus from infected cell cultures. Initial characterization of the honey bee antiviral immune responses at the cellular level indicated that there were virus-specific responses, which included increased expression of bee antiviral protein-1 (GenBank: MF116383) in SBV-infected pupal cells and increased expression of argonaute-2 and dicer-like in FHV-infected hemocytes and pupal cells. Additional studies are required to further elucidate virus-specific honey bee antiviral defense mechanisms. The continued use of cultured primary honey bee cells for studies that involve multiple viruses will address this knowledge gap.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Verena Lawrence
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (F.P.); (V.L.)
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
6
|
Bouuaert DC, De Smet L, de Graaf DC. Breeding for Virus Resistance and Its Effects on Deformed Wing Virus Infection Patterns in Honey Bee Queens. Viruses 2021; 13:v13061074. [PMID: 34199957 PMCID: PMC8228329 DOI: 10.3390/v13061074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/21/2023] Open
Abstract
Viruses, and in particular the deformed wing virus (DWV), are considered as one of the main antagonists of honey bee health. The 'suppressed in ovo virus infection' trait (SOV) described for the first time that control of a virus infection can be achieved from genetically inherited traits and that the virus state of the eggs is indicative for this. This research aims to explore the effect of the SOV trait on DWV infections in queens descending from both SOV-positive (QDS+) and SOV-negative (QDS-) queens. Twenty QDS+ and QDS- were reared from each time four queens in the same starter-finisher colony. From each queen the head, thorax, ovaries, spermatheca, guts and eviscerated abdomen were dissected and screened for the presence of the DWV-A and DWV-B genotype using qRT-PCR. Queens descending from SOV-positive queens showed significant lower infection loads for DWV-A and DWV-B as well as a lower number of infected tissues for DWV-A. Surprisingly, differences were less expressed in the reproductive tissues, the ovaries and spermatheca. These results confirm that selection on the SOV trait is associated with increased virus resistance across viral genotypes and that this selection drives DWV towards an increased tissue specificity for the reproductive tissues. Further research is needed to explore the mechanisms underlying the interaction between the antiviral response and DWV.
Collapse
|