1
|
Vo TTB, Lal A, Nattanong B, Tabassum M, Qureshi MA, Troiano E, Parrella G, Kil EJ, Lee S. Coat protein is responsible for tomato leaf curl New Delhi virus pathogenicity in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1206255. [PMID: 37492775 PMCID: PMC10364049 DOI: 10.3389/fpls.2023.1206255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite Begomovirus belonging to the family Geminiviridae, causes severe damage to many economically important crops worldwide. In the present study, pathogenicity of Asian (ToLCNDV-In from Pakistan) and Mediterranean isolates (ToLCNDV-ES from Italy) were examined using infectious clones in tomato plants. Only ToLCNDV-In could infect the three tomato cultivars, whereas ToLCNDV-ES could not. Genome-exchange of the two ToLCNDVs revealed the ToLCNDV DNA-A segment as the main factor for ToLCNDV infectivity in tomato. In addition, serial clones with chimeric ToLCNDV-In A and ToLCNDV-ES A genome segments were generated to identify the region determining viral infectivity in tomatoes. A chimeric clone carrying the ToLCNDV-In coat protein (CP) exhibited pathogenic adaptation in tomatoes, indicating that the CP of ToLCNDV is essential for its infectivity. Analyses of infectious clones carrying a single amino acid substitution revealed that amino acid at position 143 of the CP is critical for ToLCNDV infectivity in tomatoes. To better understand the molecular basis whereby CP function in pathogenicity, a yeast two-hybrid screen of a tomato cDNA library was performed using CPs as bait. The hybrid results showed different interactions between the two CPs and Ring finger protein 44-like in the tomato genome. The relative expression levels of upstream and downstream genes and Ring finger 44-like genes were measured using quantitative reverse transcription PCR (RT-qPCR) and compared to those of control plants. This is the first study to compare the biological features of the two ToLCNDV strains related to viral pathogenicity in the same host plant. Our results provide a foundation for elucidating the molecular mechanisms underlying ToLCNDV infection in tomatoes.
Collapse
Affiliation(s)
- Thuy T. B. Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Aamir Lal
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
| | - Bupi Nattanong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Marjia Tabassum
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Elisa Troiano
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), Portici, Italy
| | - Giuseppe Parrella
- Department of Biology, Agriculture and Food Sciences, Institute for Sustainable Plant Protection of the National Research Council (IPSP-CNR), Portici, Italy
| | - Eui-Joon Kil
- Agriculture Science and Technology Research Institute, Andong National University, Andong, Republic of Korea
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Rossitto De Marchi B, Gama AB, Smith HA. Evidence of the association between the Q2 mitochondrial group of Bemisia tabaci MED species (Hemiptera: Aleyrodidae) and low competitive displacement capability. PLoS One 2023; 18:e0280002. [PMID: 36634115 PMCID: PMC9836299 DOI: 10.1371/journal.pone.0280002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
The whitefly, Bemisia tabaci (Gennadius), is one of the most serious agricultural pests worldwide. Bemisia tabaci is a cryptic species complex of more than 40 species among which the invasive MEAM1 and MED species are the most widespread and economically important. Both MEAM1 and MED present intraspecific genetic variability and some haplotypes are reported to be more invasive than others. MED can be further deconstructed into different genetic groups, including MED-Q1 and MED-Q2. However, distinct biological phenotypes discerning the different MED mitochondrial haplotypes are yet to be characterized. Competitive displacement and life-history trials were carried out between MED-Q2 and MEAM1 populations collected in Florida, USA. In addition, a phylogenetic analysis was carried out including populations from previous whitefly competitive displacement studies for identification and comparison of the MED mitochondrial groups. In contrast to other studies with MED-Q1, the MED-Q2 population from Florida is less likely to displace MEAM1 on pepper. In addition, both pepper and watermelon were a more favorable host to MEAM1 compared to MED-Q2 according to the life history trials.
Collapse
Affiliation(s)
- Bruno Rossitto De Marchi
- Entomology and Nematology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
- * E-mail:
| | - Andre Bueno Gama
- Plant Pathology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
| | - Hugh A. Smith
- Entomology and Nematology Department, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, United States of America
| |
Collapse
|
3
|
Vo TTB, Troiano E, Lal A, Hoang PT, Kil EJ, Lee S, Parrella G. ToLCNDV-ES infection in tomato is enhanced by TYLCV: Evidence from field survey and agroinoculation. Front Microbiol 2022; 13:954460. [PMID: 36425034 PMCID: PMC9679516 DOI: 10.3389/fmicb.2022.954460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Elisa Troiano
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Portici, Italy
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Phuong Thi Hoang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Eui-Joon Kil
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Giuseppe Parrella
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Portici, Italy
- *Correspondence: Giuseppe Parrella,
| |
Collapse
|
4
|
Mahmood MA, Ahmed N, Hussain S, Muntaha ST, Amin I, Mansoor S. Dominance of Asia II 1 species of Bemisia tabaci in Pakistan and beyond. Sci Rep 2022; 12:1528. [PMID: 35087224 PMCID: PMC8795192 DOI: 10.1038/s41598-022-05612-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 01/09/2023] Open
Abstract
Globally, Whitefly (Bemisia tabaci) is one of the most important insect pests of crops that causes huge economical losses. The current study was designed to exclusively screen the B. tabaci species in the cotton field of Pakistan during 2017-2020 and have to conduct comparative analysis of B. tabaci species in Asia where Asia II 1 has been reported. A total of 5142 B. tabaci sequences of mitochondrial cytochrome oxidase 1 (mtCO1) from Asian countries were analyzed to determine the species and their distribution in the region. Our analysis over time and space showed that Asia II 1 has gradually dominated over Asia 1 in Punjab Province and over both Asia 1 and MEAM1 in Sindh Province. Asia has been divided into three regions i.e., South Asia (2524 sequences), Southeast Asia (757 sequences) and East Asia (1569 sequences) and dominance of different species of B. tabaci has been determined by calculating the relative percentage of each species. Interestingly, Asia II 1 has been found dominant in the neighboring region (northern zone) of India and also being dominant in its central zone. The dominance of Asia II 1 in Pakistan and northern India explains whitefly epidemic being reported in recent years.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Nasim Ahmed
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Sonia Hussain
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Sidra Tul Muntaha
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering, Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan.
| |
Collapse
|