1
|
Feng X, Ullah F, Liu J, Ji Y, Abbas S, Liao S, Ali J, Desneux N, Chen R. Instar identification and weight prediction of Ostrinia furnacalis (Guenée) larvae using machine learning. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025; 115:93-104. [PMID: 39865975 DOI: 10.1017/s0007485324000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Asian corn borer, Ostrinia furnacalis (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required. Currently, the absence of techniques capable of addressing this urgent need poses a formidable challenge to agricultural practitioners. To mitigate this issue, the current study aims to establish models conducive to the identification of larval stages. Furthermore, this study aims to devise predictive models for estimating larval weights, thereby enhancing the precision and efficacy of pest management strategies. For this, 9 classification and 11 regression models were established using four feature datasets based on the following features geometry, colour, and texture. Effectiveness of the models was determined by comparing metrics such as accuracy, precision, recall, F1-score, coefficient of determination, root mean squared error, mean absolute error, and mean absolute percentage error. Furthermore, Shapley Additive exPlanations analysis was employed to analyse the importance of features. Our results revealed that for instar identification, the DecisionTreeClassifier model exhibited the best performance with an accuracy of 84%. For larval weight, the SupportVectorRegressor model performed best with R2 of 0.9742. Overall, these findings present a novel and accurate approach to identify instar and predict the weight of O. furnacalis larvae, offering valuable insights for the implementation of management strategies against this key pest.
Collapse
Affiliation(s)
- Xiao Feng
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Farman Ullah
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiali Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yunliang Ji
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Sohail Abbas
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Siqi Liao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000Nice, France
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, PR China
| |
Collapse
|
2
|
Zhang BX, Liu FF, Liu F, Qi WX, Si YQ, Ren HY, Rao XJ. SfMBP: A novel microbial binding protein and pattern recognition receptor in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105142. [PMID: 38309673 DOI: 10.1016/j.dci.2024.105142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
The fall armyworm, Spodoptera frugiperda, poses a significant threat as a highly destructive agricultural pest in many countries. Understanding the complex interplay between the insect immune system and entomopathogens is critical for optimizing biopesticide efficacy. In this study, we identified a novel microbial binding protein, SfMBP, in S. frugiperda. However, the specific role of SfMBP in the immune response of S. frugiperda remains elusive. Encoded by the LOC118269163 gene, SfMBP shows significant induction in S. frugiperda larvae infected with the entomopathogen Beauveria bassiana. Consisting of 115 amino acids with a signal peptide, an N-terminal flexible region and a C-terminal β-sheet, SfMBP lacks any known functional domains. It is expressed predominantly during early larval stages and in the larval epidermis. Notably, SfMBP is significantly induced in larvae infected with bacteria and fungi and in SF9 cells stimulated by peptidoglycan. While recombinant SfMBP (rSfMBP) does not inhibit bacterial growth, it demonstrates binding capabilities to bacteria, fungal spores, peptidoglycan, lipopolysaccharides, and polysaccharides. This binding is inhibited by monosaccharides and EDTA. Molecular docking reveals potential Zn2+-interacting residues and three cavities. Furthermore, rSfMBP induces bacterial agglutination in the presence of Zn2+. It also binds to insect hemocytes and SF9 cells, enhancing phagocytosis and agglutination responses. Injection of rSfMBP increased the survival of S. frugiperda larvae infected with B. bassiana, whereas blocking SfMBP with the antibody decreased survival. These results suggest that SfMBP acts as a pattern recognition receptor that enhances pathogen recognition and cellular immune responses. Consequently, this study provides valuable insights for the development of pest control measures.
Collapse
Affiliation(s)
- Bang-Xian Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China; School of Biological Science and Food Engineering, Chuzhou, 239000, China
| | - Fang-Fang Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Feng Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Wen-Xuan Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Yan-Qin Si
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Hai-Yan Ren
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China
| | - Xiang-Jun Rao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China; Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, China.
| |
Collapse
|
3
|
Rakesh V, Kalia VK, Ghosh A. Diversity of transgenes in sustainable management of insect pests. Transgenic Res 2023; 32:351-381. [PMID: 37573273 DOI: 10.1007/s11248-023-00362-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Insecticidal transgenes, when incorporated and expressed in plants, confer resistance against insects by producing several products having insecticidal properties. Protease inhibitors, lectins, amylase inhibitors, and chitinase genes are associated with the natural defenses developed by plants to counter insect attacks. Several toxin genes are also derived from spiders and scorpions for protection against insects. Bacillus thuringiensis Berliner is a microbial source of insecticidal toxins. Several methods have facilitated the large-scale production of transgenic plants. Bt-derived cry, cyt, vip, and sip genes, plant-derived genes such as lectins, protease inhibitors, and alpha-amylase inhibitors, insect cell wall-degrading enzymes like chitinase and some proteins like arcelins, plant defensins, and ribosome-inactivating proteins have been successfully utilized to impart resistance to insects. Besides, transgenic plants expressing double-stranded RNA have been developed with enhanced resistance. However, the long-term effects of transgenes on insect resistance, the environment, and human health must be thoroughly investigated before they are made available for commercial planting. In this chapter, the present status, prospects, and future scope of transgenes for insect pest management have been summarized and discussed.
Collapse
Affiliation(s)
- V Rakesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinay K Kalia
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
4
|
Yokoi K, Furukawa S, Zhou R, Jouraku A, Bono H. Reference Genome Sequences of the Oriental Armyworm, Mythimna separata (Lepidoptera: Noctuidae). INSECTS 2022; 13:insects13121172. [PMID: 36555082 PMCID: PMC9853324 DOI: 10.3390/insects13121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 05/05/2023]
Abstract
Lepidopteran insects are an important group of animals, including those used as biochemical and physiological model species in the insect and silk industries as well as others that are major agricultural pests. Therefore, the genome sequences of several lepidopteran insects have been reported. The oriental armyworm, Mythimna separata, is an agricultural pest commonly used to study insect immune reactions and interactions with parasitoid wasps as hosts. To improve our understanding of these research topics, reference genome sequences were constructed in the present study. Using long-read and short-read sequence data, de novo assembly and polishing were performed and haplotigs were purged. Subsequently, gene predictions and functional annotations were performed. To search for orthologs of the Toll and Immune Deficiency (IMD) pathways and for C-type lectins, annotation data analysis, BLASTp, and Hummer scans were performed. The M. separata genome is 682 Mbp; its contig N50 was 2.7 Mbp, with 21,970 genes and 24,452 coding sites predicted. All orthologs of the core components of the Toll and IMD pathways and 105 C-type lectins were identified. These results suggest that the genome data were of sufficient quality for use as reference genome data and could contribute to promoting M. separata and lepidopteran research at the molecular and genome levels.
Collapse
Affiliation(s)
- Kakeru Yokoi
- Insect Design Technology Group, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba 305-0901, Japan;
- Correspondence: ; Tel.: +81-29-838-6129
| | - Seiichi Furukawa
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Rui Zhou
- Degree Program in Agro-Bioresources Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Akiya Jouraku
- Insect Design Technology Group, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba 305-0901, Japan;
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Japan;
- Laboratory of BioDX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Japan
| |
Collapse
|
5
|
Xu Y, Dong X, Ma S, Luo C, Xu J. Massive expansion of P-selectin genes in two Venerida species, Sinonovacula constricta and Mercenaria mercenaria: evidence from comparative genomics of Bivalvia. BMC Genomics 2022; 23:662. [PMID: 36123645 PMCID: PMC9484242 DOI: 10.1186/s12864-022-08861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background P-selectin is a molecule participating in the inflammatory response through mediating cellular adhesion and essential for wound repair. However, studies regarding P-selectin in Bivalvia are rare. This study identified 90 P-selectin genes among nine bivalve genomes and classified them into 4 subfamilies according to phylogenetic analysis. Results Notable P-selectin gene expansion was observed in two Venerida species, Sinonovacula constricta and Mercenaria mercenaria. The synteny analysis revealed that P-selectin gene expansion was mostly caused by tandem duplication. In addition, the expression profiles of P-selectin genes in S. constricta showed that many P-selectins were specifically highly expressed in the gills, and the P-selectin expression patterns changed dramatically under low salt stress and ammonia nitrogen stress. Conclusions The massive expansion of P-selectins may facilitate the tolerance to environmental stresses. This study sheds light on the characterizations and expression profiles of P-selectin genes in Bivalvia and provides an integrated framework for further investigation of the role of P-selectins in the environmental tolerance of bivalves. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08861-6.
Collapse
Affiliation(s)
- Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Xumeng Dong
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Shuonan Ma
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China.
| | - Cheng Luo
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
6
|
Wu PP, Shu RH, Gao XX, Li MM, Zhang JH, Zhang H, Qin QL, Zou Z, Meng Q. Immulectin-2 from the ghost moth, Thitarodes xiaojinensis (Lepidoptera: Hepialidae), modulates cellular and humoral responses against fungal infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104429. [PMID: 35489421 DOI: 10.1016/j.dci.2022.104429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
C type-lectins constitute a large family of pattern recognition receptors, playing important roles in insect immune defenses. Thitarodes xiaojinensis larvae showed distinct immune features after Ophiocordyceps sinensis, Cordyceps militaris, or Beauveria bassiana infection. Based on transcriptome and immunoblot analysis, we found that immulectin-2 (IML2) was induced after T. xiaojinensis larvae were infected by C. militaris or B. bassiana but maintained at a low level after larvae injected with O. sinensis or Ringer's buffer. Recombinant IML2 (rIML2) could promote melanization, encapsulation, phagocytosis, and hemocyte aggregation in vitro. RNA interference with IML2 induced a significant reduction in the transcript levels of various antimicrobial peptides. Importantly, we found that the abundance of O. sinensis blastospores coated with rIML2 dramatically decreased in the host hemolymph. Overall, this study demonstrated that T. xiaojinensis IML2 modulates cellular and humoral responses to entomopathogenic fungi, broadening our view of the immune interaction between O. sinensis and its host.
Collapse
Affiliation(s)
- Pei-Pei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Hao Shu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xin-Xin Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Miao-Miao Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Hong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Lian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Sun W, Hu G, Su Q, Wang Y, Yang W, Zhou J, Gao Y. Population Source of Third-Generation Oriental Armyworm in Jilin, China, Determined by Entomology Radar, Trajectory Analysis, and Mitochondrial COI Sequences. ENVIRONMENTAL ENTOMOLOGY 2022; 51:621-632. [PMID: 35390144 PMCID: PMC9205478 DOI: 10.1093/ee/nvac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 06/14/2023]
Abstract
The armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae), is an important polyphagous pest with a strong migratory ability. Recently, third-generation larvae have become an increasingly serious pest threat in Jilin Province of northeast China. To investigate the population source of this species, scanning entomological radar observations and insect mitochondrial cytochrome oxidase I (COI) genes were used in this study. Five main results were found: (1) The peak period in captured second-generation moths was from mid to late July. The temperature and wind speeds were optimum for the moths to have migrated. Strong southwesterly winds occurred during the peak migration period. (2) Radar observations indicated that most of the moths' migration took place at a height of 600 m, often in a dense layer which formed at heights of 350-800 m. (3) Analyses of adult ovarian development and larval haplotypes showed third-generation larvae were progeny of both locally produced progeny and immigrant moths. (4) Based on our back-tracking and haplotype analyses, immigration led to an outbreak originated in the same source area to the southwest. (5) Emigration of second-generation moths was confirmed by both radar observation and mtDNA analysis. Forward trajectories indicated that the moths were capable of immigrating far from their overwintering range. These results are useful for improving the forecasting systems of this insect pest species.
Collapse
Affiliation(s)
| | | | - Qianfu Su
- Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yangzhou Wang
- Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Wei Yang
- Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Jiachun Zhou
- Key Laboratory of Integrated Pest Management on Crops in Northeast, Ministry of Agriculture, Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | | |
Collapse
|
8
|
Alam I, Batool K, Idris AL, Tan W, Guan X, Zhang L. Role of Lectin in the Response of Aedes aegypti Against Bt Toxin. Front Immunol 2022; 13:898198. [PMID: 35634312 PMCID: PMC9136036 DOI: 10.3389/fimmu.2022.898198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Aedes aegypti is one of the world’s most dangerous mosquitoes, and a vector of diseases such as dengue fever, chikungunya virus, yellow fever, and Zika virus disease. Currently, a major global challenge is the scarcity of antiviral medicine and vaccine for arboviruses. Bacillus thuringiensis var israelensis (Bti) toxins are used as biological mosquito control agents. Endotoxins, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and Cyt1Aa, are toxic to mosquitoes. Insect eradication by Cry toxin relies primarily on the interaction of cry toxins with key toxin receptors, such as aminopeptidase (APN), alkaline phosphatase (ALP), cadherin (CAD), and ATP-binding cassette transporters. The carbohydrate recognition domains (CRDs) of lectins and domains II and III of Cry toxins share similar structural folds, suggesting that midgut proteins, such as C-type lectins (CTLs), may interfere with interactions among Cry toxins and receptors by binding to both and alter Cry toxicity. In the present review, we summarize the functional role of C-type lectins in Ae. aegypti mosquitoes and the mechanism underlying the alteration of Cry toxin activity by CTLs. Furthermore, we outline future research directions on elucidating the Bti resistance mechanism. This study provides a basis for understanding Bti resistance, which can be used to develop novel insecticides.
Collapse
Affiliation(s)
- Intikhab Alam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Lingling Zhang,
| |
Collapse
|
9
|
Liu FF, Liu Z, Li H, Zhang WT, Wang Q, Zhang BX, Sun YX, Rao XJ. CTL10 has multiple functions in the innate immune responses of the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104309. [PMID: 34748796 DOI: 10.1016/j.dci.2021.104309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Insect C-type lectins (CTLs) play crucial roles in modulating the humoral and cellular immune responses. In the domesticated silkworm Bombyx mori L., BmCTL10 gene encodes an immulectin containing two carbohydrate recognition domains (CRDs). The phylogenetic analysis showed that BmCTL10 didn't cluster with other immulectin homologs in B. mori. BmCTL10 was mainly expressed in second to fifth instar larvae, wandering stage larvae, prepupa, and adults. In naïve fifth instar larvae, BmCTL10 was predominantly expressed in the fat body and epidermis. In second instar larvae, the topical application of Beauveria bassiana by immersion caused down-regulation of BmCTL10. The intra-hemocoel injection of E. coli, S. aureus, B. bassiana, and 20-hydroxyecdysone in fifth instar larvae caused tissue and time-specific inductions. The recombinant protein (rBmCTL10) can bind to larval hemocytes and various pathogen-associated molecular patterns to enhance hemocyte-mediated nodulation, phagocytosis, and encapsulation. rBmCTL10 caused significant upregulation of most antimicrobial peptides and nitric oxide synthase 1 in hemocytes in vivo. Yeast two-hybrid demonstrated that integrin β3 and β4 subunits can interact with BmCTL10. Furthermore, only CRD2 can interact with the β3, while both CRD1 and CRD2 can interact with the β4. Taken together, this study showed that BmCTL10 has multiple functions in the innate immune responses of B. mori and two integrin β subunits are their potential receptors.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ze Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Hao Li
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Wen-Ting Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Qian Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Bang-Xian Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yan-Xia Sun
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiang-Jun Rao
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China.
| |
Collapse
|
10
|
Liu H, Guo S, Wang R, He Y, Shi Q, Song Z, Yang M. Pathogen of Vibrio harveyi infection and C-type lectin proteins in whiteleg shrimp (Litopenaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2021; 119:554-562. [PMID: 34718124 DOI: 10.1016/j.fsi.2021.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Diseases caused by Vibrio harveyi in shrimps have gradually become one group of the most serious threats to shrimp production, while related molecular mechanisms of infections with Vibrio harveyi are still not known well in shrimps. Here, we performed proteomic sequencing of hepatopancreas in whiteleg shrimps (Litopenaeus vannamei) infected with exogenous Vibrio harveyi, and subsequent functional annotation and calculation of differentially expressed proteins (DEPs) in this study. A total of 145 DEPs were obtained, among them 36 were up-regulated and 109 were down-regulated after the infection. Meanwhile, our results showed that after the infection of Vibrio harveyi, expression levels of a variety of C-type lectins (CTLs) were changed significantly. In-depth functional domain analysis and spatial structure prediction of these CTLs revealed that amino acid sequences and spatial structures of the C-type lectin domain (CTLD) shared by the CTL-S and IML proteins were variant, suggesting differential functions between the two CTLs. In summary, various members of the CTL family have different epidemic responses to Vibrio harveyi infection, which provides a theoretical guidance for deep-going investigations on practical immunity reactions and pathogen infections in shrimps.
Collapse
Affiliation(s)
- Hongtao Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Rong Wang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Yugui He
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083, China
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Mingqiu Yang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, China.
| |
Collapse
|