1
|
Kim D, Burkett-Cadena ND, Reeves LE. Changes in mosquito species and blood meal composition associated with adulticide applications. Sci Rep 2023; 13:22087. [PMID: 38086895 PMCID: PMC10716403 DOI: 10.1038/s41598-023-49494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
Although adulticide application is a pillar in the integrated management of nuisance and vector mosquitoes, non-target effects of adulticide applications within ecosystems are a substantial concern. However, the impacts of adulticide applications on non-target organisms are not necessarily detrimental, and in some cases, may provide benefits to certain organisms or wildlife. Here, we hypothesized that adulticide applications have beneficial non-target impacts on vertebrate wildlife through reduced biting pressure. To test this, we collected mosquitoes from ultra-low volume Permanone-treated (intervention) and untreated (reference) areas and assessed mosquito abundance and diversity, and abundance of blood-engorged female mosquitoes. We performed DNA barcoding analysis on mosquito blood meals to identify host species. Our results demonstrated a significant reduction in mosquito abundance by 58.9% in the intervention areas, taking into account the reduction in reference areas. Consequently, this decline led to a 64.5% reduction in the abundance of blood-engorged females. We also found a temporal dynamic of mosquito composition driven by mosquito control actions in which different mosquito species became dominant at treated sites while composition at reference areas remained similar during the same period. The present study suggests that the beneficial effects of mosquito control treatments for humans extend to other vertebrates, which represents an unstudied and rarely recognized non-target impact.
Collapse
Affiliation(s)
- Dongmin Kim
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA.
| | | | - Lawrence E Reeves
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA.
| |
Collapse
|
2
|
Hikal WM, Baz MM, Alshehri MA, Bahattab O, Baeshen RS, Selim AM, Alhwity L, Bousbih R, Alshourbaji MS, Ahl HAHSA. Sustainable Pest Management Using Novel Nanoemulsions of Honeysuckle and Patchouli Essential Oils against the West Nile Virus Vector, Culex pipiens, under Laboratory and Field Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3682. [PMID: 37960039 PMCID: PMC10650709 DOI: 10.3390/plants12213682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Essential oils are natural plant products that are very interesting, as they are important sources of biologically active compounds. They comprise eco-friendly alternatives to mosquito vector management, particularly essential oil nanoemulsion. Therefore, the aim of this study is to evaluate the effectiveness of 16 selected essential oils (1500 ppm) in controlling mosquitoes by investigating their larvicidal effects against the larvae and adults of the West Nile virus vector Culex pipiens L. (Diptera: Culicidae); the best oils were turned into nanoemulsions and evaluated under laboratory and field conditions. The results show that honeysuckle (Lonicera caprifolium) and patchouli (Pogostemon cablin) essential oils were more effective in killing larvae than the other oils (100% mortality) at 24 h post-treatment. The nanoemulsions of honeysuckle (LC50 = 88.30 ppm) and patchouli (LC50 = 93.05 ppm) showed significantly higher larvicidal activity compared with bulk honeysuckle (LC50 = 247.72 ppm) and patchouli (LC50 = 276.29 ppm) oils. L. caprifolium and P. cablin (100% mortality), followed by Narcissus tazetta (97.78%), Rosmarinus officinalis (95.56%), and Lavandula angustifolia (95.55%), were highly effective oils in killing female mosquitoes, and their relative efficacy at LT50 was 5.5, 5.3, 5.8, 4.1, and 3.2 times greater, respectively, than Aloe vera. The results of the field study show that the honeysuckle and patchouli oils and their nanoemulsions reduced densities to 89.4, 86.5, 98.6, and 97.0% at 24 h post-treatment, respectively, with persistence for eight days post-treatment in pools. Nano-honeysuckle (100% mortality) was more effective than honeysuckle oils (98.0%). Our results show that honeysuckle and patchouli oils exhibited promising larvicidal and adulticidal activity of C. pipiens.
Collapse
Affiliation(s)
- Wafaa M. Hikal
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (O.B.); (R.S.B.); (L.A.); (M.S.A.)
- Parasitology Laboratory, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt
| | - Mohamed M. Baz
- Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt;
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (O.B.); (R.S.B.); (L.A.); (M.S.A.)
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (O.B.); (R.S.B.); (L.A.); (M.S.A.)
| | - Rowida S. Baeshen
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (O.B.); (R.S.B.); (L.A.); (M.S.A.)
| | - Abdelfattah M. Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
| | - Latifah Alhwity
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (O.B.); (R.S.B.); (L.A.); (M.S.A.)
| | - Rabaa Bousbih
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia;
| | - Maha Suleiman Alshourbaji
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (M.A.A.); (O.B.); (R.S.B.); (L.A.); (M.S.A.)
| | - Hussein A. H. Said-Al Ahl
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt;
| |
Collapse
|
3
|
Srisuka W, Sulin C, Sommitr W, Rattanarithikul R, Aupalee K, Saeung A, Harbach RE. Mosquito (Diptera: Culicidae) Diversity and Community Structure in Doi Inthanon National Park, Northern Thailand. INSECTS 2022; 13:814. [PMID: 36135515 PMCID: PMC9505505 DOI: 10.3390/insects13090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Urbanization and human activities create new suitable aquatic habitats for the immature stages of mosquitoes in many countries. This also applies to Doi Inthanon National Park in northern Thailand, which is named for the highest mountain in the country. Despite its popularity, there is no information regarding mosquito diversity and community structure in the different ecosystems of the park. Monthly collections of immature stages from various habitats were conducted from August 2004 to December 2005 using dipping and sucking methods. The specimens collected from each habitat were reared to adults and identified based on their morphology. Diversity parameters and community structure were statistically analyzed. A total of 140 species (3795 specimens) belonging to 15 genera were identified. Among these, four genera (Culex, Aedes, Anopheles, and Uranotaenia) had high species richness, each represented by 48, 27, 19, and 15 species, respectively. Aedes albopictus was the most relatively abundant species, representing 6.7% of the total number of captured specimens, followed by Tripteroides aranoides (5.6%) and Cx. mimulus (5%). Species richness in natural habitats was significantly higher than in artificial containers. Species richness and abundance were highest in the rainy season. In comparison to agricultural areas and villages, mosquito diversity was found to be higher in forest areas. Ground pools, stream pools, rock pools, bamboo stumps, bamboo internode, and rice fields were the most preferred natural habitats. The results indicate that Doi Inthanon National Park has a high mosquito diversity. Each species exhibits differences in abundance and distribution in different habitats, which is useful information for planning conservation measures and vector control in the park.
Collapse
Affiliation(s)
- Wichai Srisuka
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai 50180, Thailand
| | - Chayanit Sulin
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai 50180, Thailand
| | - Wirat Sommitr
- Entomology Section, Queen Sirikit Botanic Garden, P.O. Box 7, Chiang Mai 50180, Thailand
| | | | - Kittipat Aupalee
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ralph E. Harbach
- Scientific Associate, Natural History Museum, London SW7 5BD, UK
| |
Collapse
|
4
|
Bertola M, Fornasiero D, Sgubin S, Mazzon L, Pombi M, Montarsi F. Comparative efficacy of BG-Sentinel 2 and CDC-like mosquito traps for monitoring potential malaria vectors in Europe. Parasit Vectors 2022; 15:160. [PMID: 35526068 PMCID: PMC9077833 DOI: 10.1186/s13071-022-05285-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Different trapping devices and attractants are used in the mosquito surveillance programs currently running in Europe. Most of these devices target vector species belonging to the genera Culex or Aedes, and no studies have yet evaluated the effectiveness of different trapping devices for the specific targeting of Anopheles mosquito species, which are potential vectors of malaria in Europe. This study aims to fill this gap in knowledge by comparing the performance of trapping methods that are commonly used in European mosquito surveillance programs for Culex and Aedes for the specific collection of adults of species of the Anopheles maculipennis complex. Methods The following combinations of traps and attractants were used: (i) BG-Sentinel 2 (BG trap) baited with a BG-Lure cartridge (BG + lure), (ii) BG trap baited with a BG-Lure cartridge and CO2 (BG + lure + CO2), (iii) Centers for Disease Control and Prevention-like trap (CDC trap) baited with CO2 (CDC + CO2), (iv) CDC trap used with light and baited with BG-Lure and CO2 (CDC light + lure + CO2). These combinations were compared in the field using a 4 × 4 Latin square study design. The trial was conducted in two sites in northeastern Italy in 2019. Anopheles species were identified morphologically and a sub-sample of An. maculipennis complex specimens were identified to species level by molecular analysis. Results Forty-eight collections were performed on 12 different trapping days at each site, and a total of 1721 An. maculipennis complex specimens were captured. The molecular analysis of a sub-sample comprising 254 specimens identified both Anopheles messeae/Anopheles daciae (n = 103) and Anopheles maculipennis sensu stricto (n = 8) at site 1, while at site 2 only An. messeae/An. daciae (n = 143) was found. The four trapping devices differed with respect to the number of An. messeae/An. daciae captured. More mosquitoes were caught by the BG trap when it was used with additional lures (i.e. BG + lure + CO2) than without the attractant, CO2 [ratioBG+lure vs BG+lure+CO2 = 0.206, 95% confidence interval (CI) 0.101–0.420, P < 0.0001], while no significant differences were observed between CDC + CO2 and CDC light + lure + CO2 (P = 0.321). The addition of CO2 to BG + lure increased the ability of this combination to capture An. messeae/An. daciae by a factor of 4.85, and it also trapped more mosquitoes of other, non-target species (Culex pipiens, ratioBG+lure vs BG+lure+CO2 = 0.119, 95% CI 0.056–0.250, P < 0.0001; Ochlerotatus caspius, ratioBG+lure vs BG+lure+CO2 = 0.035, 95% CI 0.015–0.080, P < 0.0001). Conclusions Our results show that both the BG-Sentinel and CDC trap can be used to effectively sample An. messeae/An. daciae, but that the combination of the BG-Sentinel trap with the BG-Lure and CO2 was the most effective means of achieving this. BG + lure + CO2 is considered the best combination for the routine monitoring of host-seeking An. maculipennis complex species such as An. messeae/An. daciae. The BG-Sentinel and CDC traps have value as alternative methods to human landing catches and manual aspiration for the standardized monitoring of Anopheles species in Europe. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05285-9.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Padua, Italy
| | - Diletta Fornasiero
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Padua, Italy
| | - Sofia Sgubin
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Padua, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Padua, Italy
| | - Marco Pombi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Padua, Italy. .,Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|