1
|
Lin CY, Robledo Buritica J, Sarkar P, Jassar O, Rocha SV, Batuman O, Stelinski LL, Levy A. An insect virus differentially alters gene expression among life stages of an insect vector and enhances bacterial phytopathogen transmission. J Virol 2024:e0163024. [PMID: 39714167 DOI: 10.1128/jvi.01630-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Diaphorina citri transmits Candidatus Liberibacter asiaticus (CLas) between citrus plants which causes the expression of huanglongbing disease in citrus. D. citri flavi-like virus (DcFLV) co-occurs intracellularly with CLas in D. citri populations in the field. However, the impact(s) of DcFLV presence on the insect vector and its interaction with the CLas phytopathogen remain unclear. We compared CLas acquisition and transmission efficiencies as well as transcriptomic expression between viruliferous and non-viruliferous psyllids at multiple life stages. Viruliferous nymphs acquired higher titers of CLas than non-viruliferous nymphs, whereas viruliferous adults acquired less CLas than those without virus. The presence of DcFLV increased the transmission of CLas by both nymphs and adults. Furthermore, RNA-seq and functional gene expression analyses revealed that endoplasmic reticulum stress-, autophagy-, and defense-related genes were significantly upregulated in viruliferous adult psyllids, whereas most of these genes were downregulated in viruliferous nymphs. Our work demonstrates that DcFLV differentially modulates various cellular and physiological functions in D. citri in a life stage-dependent manner and promotes the acquisition of CLas at the nymphal stage and transmission of the pathogen at the adult stage of the vector. Collectively, our results suggest that D. citri vectors with DcFLV exhibit greater pathogen transmission efficiency than those without virus. IMPORTANCE Huanglongbing (HLB), caused by fastidious bacteria from three Candidatus Liberibacter species, is the most damaging disease impacting the citrus industry worldwide. Spread by the Asian citrus psyllid (Diaphorina citri) in Asia and the Americas, HLB causes substantial financial losses, and has reduced citrus production in Florida by more than 90%. Although there are ongoing efforts to limit spread of the disease, effective HLB management remains elusive. Suppressing vector populations and decreasing CLas transmission are the two strategies that need to be urgently improved. Recently, a D. citri flavi-like virus (DcFLV) was characterized within its D. citri host, and it co-occurs intracellularly with CLas in psyllid populations. Here, we show that viruliferous nymphs exhibit higher CLas acquisition than non-viruliferous nymphs. Furthermore, both viruliferous adults and nymphs exhibit increased CLas transmission efficiency. We suggest the possibility of manipulating DcFLV in D. citri populations to reduce CLas transmission for HLB disease management.
Collapse
Affiliation(s)
- Chun-Yi Lin
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | | | - Poulami Sarkar
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Ola Jassar
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel
| | - Sâmara Vieira Rocha
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, USA
| | - Lukasz L Stelinski
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Oh J, Mendoza Herrera MA, Leal-Galvan B, Kontsedalov S, Ghanim M, Tamborindeguy C. Accumulation and Transmission of ' Candidatus Liberibacter solanacearum' Haplotypes by the Nymphs of Two Psyllid Vectors. INSECTS 2023; 14:956. [PMID: 38132629 PMCID: PMC10743972 DOI: 10.3390/insects14120956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is a plant pathogenic bacterium transmitted by psyllids that causes significant agricultural damage. Several Lso haplotypes have been reported. Among them, LsoA and LsoB are transmitted by the potato psyllid Bactericera cockerelli and infect solanaceous crops, and LsoD is transmitted by the carrot psyllid B. trigonica and infects apiaceous crops. Several studies evaluated the transmission of these haplotypes by adult psyllids. However, fewer data are available on the transmission of different Lso haplotypes by psyllid nymphs. In this study, we investigated the transmission of these three haplotypes by psyllid nymphs to expand our basic understanding of Lso transmission. Specifically, the objective was to determine if the haplotypes differed in their transmission rates by nymphs and if LsoA and LsoB accumulated at different rates in the guts of nymphs as it occurs in adults. First, we quantified LsoA and LsoB titers in the guts of third- and fifth-instar potato psyllid nymphs. We found similar LsoA titers in the two nymphal stages, while LsoB titer was lower in the gut of the third-instar nymphs compared to fifth-instar nymphs. Second, we assessed the transmission efficiency of LsoA and LsoB by third-instar nymphs to tomato plants, revealing that LsoA was transmitted earlier and with higher efficiency than LsoB. Finally, we examined the transmission of LsoD by carrot psyllid nymphs to celery plants and demonstrated an age-related difference in the transmission rate. These findings provide valuable insights into the transmission dynamics of different Lso haplotypes by nymphal vectors, shedding light on their epidemiology and interactions with their psyllid vectors.
Collapse
Affiliation(s)
- Junepyo Oh
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.O.); (M.A.M.H.); (B.L.-G.)
| | | | - Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.O.); (M.A.M.H.); (B.L.-G.)
| | - Svetlana Kontsedalov
- Department of Entomology, Agricultural Research Organization, The Volcani Center, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, The Volcani Center, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7505101, Israel;
| | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.O.); (M.A.M.H.); (B.L.-G.)
| |
Collapse
|
3
|
Sarkar P, Jassar O, Ghanim M. The plant pathogenic bacterium Candidatus Liberibacter solanacearum induces calcium-regulated autophagy in midgut cells of its insect vector Bactericera trigonica. Microbiol Spectr 2023; 11:e0130123. [PMID: 37768086 PMCID: PMC10581152 DOI: 10.1128/spectrum.01301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/11/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy plays an important role against pathogen infection in many organisms; however, little has been done with regard to vector-borne plant and animal pathogens, that sometimes replicate and cause deleterious effects in their vectors. Candidatus Liberibacter solanacearum (CLso) is a fastidious gram-negative phloem-restricted plant pathogen and vectored by the carrot psyllid, Bactericera trigonica. The plant disease caused by this bacterium is called carrot yellows and has recently gained much importance due to worldwide excessive economical losses. Here, we demonstrate that calcium ATPase, cytosolic calcium, and most importantly Beclin-1 have a role in regulating autophagy and its association with Liberibacter inside the psyllid. The presence of CLso generates reactive oxygen species and induces the expression of detoxification enzymes in the psyllid midguts, a main site for bacteria transmission. CLso also induces the expression of both sarco/endoplasmic reticulum Ca2+pump (SERCA) and 1,4,5-trisphosphate receptors (ITPR) in midguts, resulting in high levels of calcium in the cellular cytosol. Silencing these genes individually disrupted the calcium levels in the cytosol and resulted in direct effects on autophagy and subsequently on Liberibacter persistence and transmission. Inhibiting Beclin1-phosphorylation through different calcium-induced kinases altered the expression of autophagy and CLso titers and persistence. Based on our results obtained from the midgut, we suggest the existence of a direct correlation between cytosolic calcium levels, autophagy, and CLso persistence and transmission by the carrot psyllid. IMPORTANCE Plant diseases caused by vector-borne Liberibacter species are responsible for the most important economic losses in many agricultural sectors. Preventing these diseases relies mostly on chemical sprays against the insect vectors. Knowledge-based interference with the bacteria-vector interaction remains a promising approach as a sustainable solution. For unravelling how Liberibacter exploits molecular pathways in its insect vector for transmission, here, we show that the bacterium manipulates calcium levels on both sides of the endoplasmic reticulum membrane, resulting in manipulating autophagy. Silencing genes associated with these pathways disrupted the calcium levels in the cytosol and resulted in direct effects on autophagy and Liberibacter transmission. These results demonstrate major pathways that could be exploited for manipulating and controlling the disease transmission.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
| | - Ola Jassar
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
4
|
Oh J, Tamborindeguy C. Treatment of Rapamycin and Evaluation of an Autophagic Response in the Gut of Bactericera cockerelli (Sulč). INSECTS 2023; 14:142. [PMID: 36835711 PMCID: PMC9958837 DOI: 10.3390/insects14020142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Autophagy is a catabolic process that results in the autophagosomic-lysosomal degradation of bulk cytoplasmic content, abnormal protein aggregates, and excess of/or damaged organelles to promote cell survival. Autophagy is also a component of innate immunity in insects and is involved in the clearance of pathogens, including bacteria. The potato psyllid, Bactericera cockerelli, transmits the plant bacterial pathogen 'Candidatus Liberibacter solanacearum' (Lso) in the Americas and causes serious damage to solanaceous crops. Our previous studies showed that autophagy could be involved in the psyllid response to Lso and could affect pathogen acquisition. However, the tools to evaluate this response have not been validated in psyllids. To this end, the effect of rapamycin, a commonly used autophagy inducer, on potato psyllid survival and the expression of autophagy-related genes was evaluated. Further, the autophagic activity was assessed via microscopy and by measuring the autophagic flux. Artificial diet-feeding assays using rapamycin resulted in significant psyllid mortality, an increase in the autophagic flux, as well as an increase in the amount of autolysosomes. This study represents a stepping stone in determining the role of autophagy in psyllid immunity.
Collapse
|
5
|
Silencing the Autophagy-Related Genes ATG3 and ATG9 Promotes SRBSDV Propagation and Transmission in Sogatella furcifera. INSECTS 2022; 13:insects13040394. [PMID: 35447836 PMCID: PMC9029546 DOI: 10.3390/insects13040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
Autophagy plays diverse roles in the interaction among pathogen, vector, and host. In the plant virus and insect vector system, autophagy can be an antiviral/pro-viral factor to suppress/promote virus propagation and transmission. Here, we report the antiviral role of autophagy-related genes ATG3 and ATG9 in the white-backed planthopper (Sogatella furcifera) during the process of transmitting the southern rice black-streaked dwarf virus (SRBSDV). In this study, we annotated two autophagy-related genes, SfATG3 and SfATG9, from the female S. furcifera transcriptome. The cDNA of SfATG3 and SfATG9 comprised an open reading frame (ORF) of 999 bp and 2295 bp that encodes a protein of 332 and 764 amino acid residues, respectively. SfATG3 has two conserved domains and SfATG9 has one conserved domain. In S. furcifera females exposed to SRBSDV, expression of autophagy-related genes was significantly activated and shared similar temporal patterns to those of SRBSDV S9-1 and S10, all peaking at 4 d post viral exposure. Silencing the expression of SfATG3 and SfATG9 promoted SRBSDV propagation and transmission. This study provides evidence for the first time that S. furcifera autophagy-related genes ATG3 and ATG9 play an antiviral role to suppress SRBSDV propagation and transmission.
Collapse
|