1
|
Zhang C, Zhang JY, Wang N, Abou El-Ela AS, Shi ZY, You YZ, Ali SA, Zhou WW, Zhu ZR. RNAi-mediated knockdown of papilin gene affects the egg hatching in Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:4779-4789. [PMID: 38837578 DOI: 10.1002/ps.8194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive pests of rice. Owing to the rapid adaptation of BPH to many pesticides and resistant varieties, identifying putative gene targets for developing RNA interference (RNAi)-based pest management strategies has received much attention for this pest. The glucoprotein papilin is the most abundant component in the basement membranes of many organisms, and its function is closely linked to development. RESULTS In this study, we identified a papilin homologous gene in BPH (NlPpn). Quantitative Real-time PCR analysis showed that the transcript of NlPpn was highly accumulated in the egg stage. RNAi of NlPpn in newly emerged BPH females caused nonhatching phenotypes of their eggs, which may be a consequence of the maldevelopment of their embryos. Moreover, the transcriptomic analysis identified 583 differentially expressed genes between eggs from the dsGFP- and dsNlPpn-treated insects. Among them, the 'structural constituent of cuticle' cluster ranked first among the top 15 enriched GO terms. Consistently, ultrastructural analysis unveiled that dsNlPpn-treated eggs displayed a discrete and distorted serosal endocuticle lamellar structure. Furthermore, the hatchability of BPH eggs was also successfully reduced by the topical application of NlPpn-dsRNA-layered double hydroxide nanosheets onto the adults. CONCLUSION Our findings demonstrate that NlPpn is essential to maintaining the regular structure of the serosal cuticle and the embryonic development in BPH, indicating NlPpn could be a potential target for pest control during the egg stage. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Jin-Yi Zhang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Ni Wang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Amr S Abou El-Ela
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Zhe-Yi Shi
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yuan-Zheng You
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Soomro Abid Ali
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
2
|
Mwaka HS, Bauters L, Namaganda J, Marcou S, Bwesigye PN, Kubiriba J, Smagghe G, Tushemereirwe WK, Gheysen G. Transgenic East African Highland Banana Plants Are Protected against Radopholus similis through Host-Delivered RNAi. Int J Mol Sci 2023; 24:12126. [PMID: 37569502 PMCID: PMC10418933 DOI: 10.3390/ijms241512126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The burrowing nematode Radopholus similis is considered a major problem of intensive banana cultivation. It can cause extensive root damage resulting in the toppling disease of banana, which means that plants fall to the ground. Soaking R. similis in double-stranded (ds) RNA of the nematode genes Rps13, chitin synthase (Chs-2), Unc-87, Pat-10 or beta-1,4-endoglucanase (Eng1a) suppressed reproduction on carrot discs, from 2.8-fold (Chs-2) to 7-fold (Rps13). The East African Highland Banana cultivar Nakitembe was then transformed with constructs for expression of dsRNA against the same genes, and for each construct, 30 independent transformants were tested with nematode infection. Four months after transfer from in vitro culture to the greenhouse, the banana plants were transferred to a screenhouse and inoculated with 2000 nematodes per plant, and thirteen weeks later, they were analyzed for several parameters including plant growth, root necrosis and final nematode population. Plants with dsRNA constructs against the nematode genes were on average showing lower nematode multiplication and root damage than the nontransformed controls or the banana plants expressing dsRNA against the nonendogenous gene. In conclusion, RNAi seems to efficiently protect banana against damage caused by R. similis, opening perspectives to control this pest.
Collapse
Affiliation(s)
- Henry Shaykins Mwaka
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Lander Bauters
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| | - Josephine Namaganda
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Shirley Marcou
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | - Priver Namanya Bwesigye
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Jerome Kubiriba
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | | | - Godelieve Gheysen
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| |
Collapse
|
3
|
Zhang L, Wei Y, Wei L, Liu X, Liu N. Effects of transgenic cotton lines expressing dsAgCYP6CY3-P1 on the growth and detoxification ability of Aphis gossypii glover. PEST MANAGEMENT SCIENCE 2023; 79:481-488. [PMID: 36196669 DOI: 10.1002/ps.7220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The pest Aphis gossypii Glover globally causes considerable economic losses on various crops by its feeding damage and disease transmission. Transgenic plants that produce double-stranded RNA (dsRNA) targeted to insect genes are being developed as a pest control strategy. In this study, we evaluated the effects of transgenic cotton-mediated RNA interference (RNAi) on the growth and detoxification ability of A. gossypii after the transgenic cotton lines expressing dsAgCYP6CY3-P1 (the TG cotton lines) were obtained on the basis of exploring the functions of CYP6CY3 in our previous research. RESULTS The developmental time of third- and fourth-instar nymphs which fed on the TG cotton lines were significantly prolonged. Life table parameters showed that the fitness of cotton aphids from the TG cotton lines decreased. Additionally, the relative expression level of CYP6CY3 in cotton aphids which fed on the TG cotton lines was significantly reduced by 47.3 % at 48 h compared with that from the nontransgenic cotton (the NT cotton). Bioassay showed that silencing of CYP6CY3 increased mortality of the nymphs to imidacloprid by 28.49 % (at 24 h) and to acetamiprid by 73.77 % (at 48 h), respectively. CONCLUSION These results indicated that the TG cotton lines delayed the growth and development of A. gossypii, but also decreased population density and increased its sensitivity to imidacloprid and acetamiprid, respectively. The results provide further support for the development and application of plant-mediated RNAi. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lianjun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yuanjie Wei
- Xinjiang Science and Technology Project Service Center, Urumqi, China
| | - Linyu Wei
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Ning Liu
- Institute of Crop Variety Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|