1
|
Patel NF, Letinić BD, Lobb L, Zawada J, Dlamini DM, Mabaso N, Munhenga G, Oliver SV. Comparison of the effect of bacterial stimulation on the global epigenetic landscape and transcription of immune genes in primarily zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). Mol Biochem Parasitol 2024; 260:111631. [PMID: 38844266 DOI: 10.1016/j.molbiopara.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Members of the Anopheles gambiae complex vary in their vector competence, and this is often attributed to behavioural differences. Similarly, there are differences in transmission capabilities of the zoophilic members of this complex despite exhibiting similar behaviours. Therefore, behavioural differences alone cannot fully explain vector competence variation within members of the An. gambiae complex. The immune system of mosquitoes plays a key role in determining susceptibility to parasite infection and consequently transmission capacity. This study aimed to examine variations in the immune response of An. arabiensis, An. merus and An. quadriannulatus, a major, minor, and non-vector respectively. The global epigenetic landscape was characterised and the expression of Defensin-1 and Gambicin was assessed in response to Gram-positive (Streptococcus pyogenes) and Gram-negative (Escherichia coli) bacterial infections. The effect of insecticide resistance in An. arabiensis on these aspects was also assessed. The immune system was stimulated by a blood-borne bacterial supplementation. The 5mC, 5hmC, m6A methylation levels and Histone Acetyl Transferase activity were assessed with commercial ELISA kits. The transcript levels of Defensin-1 and Gambicin were assessed by quantitative Real-Time Polymerase Chain Reaction. Species-specific differences in 5mC and m6A methylation existed both constitutively as well as post immune stimulation. The epigenetic patterns observed in the laboratory strains were largely conserved in F1 offspring of wild-caught adults. The methylation patterns in the major vector typically differed from that of the minor/non-vectors. The differences between insecticide susceptible and resistant An. arabiensis were more reflected in the expression of Defensin-1 and Gambicin. The expression of these peptides differed in the strains only after bacterial stimulation. Anopheles merus and An. quadriannulatus expressed significantly higher levels of antimicrobial peptides, both constitutively and after immune stimulation. These findings suggest molecular variations in the immune response of members of the An. gambiae complex.
Collapse
Affiliation(s)
- Nashrin F Patel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Blaženka D Letinić
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leanne Lobb
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Clinical HIV Research Unit, Wits Health Consortium, Johannesburg, South Africa
| | - Jacek Zawada
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; South African National Biodiversity Institute (SANBI) National Zoological Gardens, Pretoria, South Africa
| | - Dumsani M Dlamini
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nondumiso Mabaso
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Givemore Munhenga
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Silva JRDA, de Oliveira AA, França LP, da Cruz JD, Amaral ACF. Exploring the Larvicidal and Adulticidal Activity against Aedes aegypti of Essential Oil from Bocageopsis multiflora. Molecules 2024; 29:2240. [PMID: 38792102 PMCID: PMC11124082 DOI: 10.3390/molecules29102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the chemical composition of the essential oil obtained from the leaves of Bocageopsis multiflora (Mart.) R.E.Fr (Annonaceae), examining its effectiveness in combating both the larvae and adult forms of Aedes aegypti mosquitoes. Additionally, for a deeper understanding of the insecticidal activity, toxicity properties and molecular docking calculations were conducted using the main compounds of this essential oil. GC/MS analysis revealed the presence of 26 constituents, representing 95.2% of the essential oil, with the major components identified as the sesquiterpenes α-selinene, β-selinene, and β-elemene. Larvicidal assays demonstrated potent activity of this essential oil with significant LC50 values of 40.8 and 39.4 μg/mL at 24 and 48 h, respectively. Adulticidal assessments highlighted strong efficacy with LC50 of 12.5 µg/mL. Molecular docking analysis identified optimal interaction activities of α-selinene and β-selinene with key Aedes proteins. The in silico studies comparing synthetic insecticides with the major sesquiterpenes of the essential oil revealed that β-selinene exhibited a significantly higher binding affinity compared to the other two sesquiterpenes. Also, ADMET studies of the three main sesquiterpenes indicated acceptable drug-like properties. In these findings, safety evaluations showed low toxicity and skin sensitization for the main sesquiterpenes, contrasting with commercial synthetic insecticides. Therefore, in silico analyses suggest promising interactions with Aedes proteins, indicating its potential as an effective alternative to conventional insecticides These results show the larvicidal and adulticidal potential of the essential oil from Bocageopsis multiflora against Aedes aegypti, supported by its predominant constituents, α-selinene, β-selinene and β-elemene.
Collapse
Affiliation(s)
- Jefferson Rocha de Andrade Silva
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Aimêe Almeida de Oliveira
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Leandro Pereira França
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus 69077-000, Brazil; (A.A.d.O.); (L.P.F.)
| | - Jefferson Diocesano da Cruz
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil;
| | - Ana Claudia Fernandes Amaral
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21041-250, Brazil;
| |
Collapse
|
3
|
Maharaj R, Seocharan I, Lakan V, Nyawo Z, Mkhabela M, Balakrishna Y. Field evaluation of the residual efficacy of new generation insecticides for potential use in indoor residual spray programmes in South Africa. Malar J 2024; 23:127. [PMID: 38689283 PMCID: PMC11059639 DOI: 10.1186/s12936-024-04963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The decreasing residual efficacy of insecticides is an important factor when making decisions on insecticide choice for national malaria control programmes. The major challenge to using chemicals for vector control is the selection for the development of insecticide resistance. Since insecticide resistance has been recorded for most of the existing insecticides used for indoor residual spraying, namely, DDT, pyrethroids, organophosphates and carbamates, and new chemicals are necessary for the continued success of indoor residual spraying. The aim of this study was to assess the residual efficacy of Actellic 300CS, SumiShield™ 50WG and Fludora®Fusion by spraying on different wall surfaces. METHODS One hundred and sixty-eight houses with different wall surface types (mud, cement, painted cement, and tin) which represented the rural house wall surface types in KwaZulu-Natal, South Africa were used to evaluate the residual efficacy of Actellic 300CS, SumiShield 50WG and Fludora®Fusion with DDT as the positive control. All houses were sprayed by experienced spray operators from the Malaria Control Programme. Efficacy of these insecticides were evaluated by contact bioassays against Anopheles arabiensis, a vector species. The residual efficacy of the insecticide formulations was evaluated against a susceptible insectary-reared population of An. arabiensis using WHO cone bioassays. RESULTS Effectiveness of the three insecticides was observed up to 12 months post-spray. When assessing the achievement of 100% mortality over time, SumiShield performed significantly better than DDT on mud (OR 2.28, 95% CI 1.72-3.04) and painted cement wall types (OR 3.52, 95% CI 2.36-5.26). On cement wall types, Actellic was found to be less effective than DDT (OR 0.55, 95% CI 0.37-0.82) while Fludora®Fusion was less effective on tin wall types (OR 0.67, 95% CI 0.47-0.95). When compared to the combined efficacy of DDT on mud surfaces, SumiShield applied to each of the mud, cement and painted cement wall types and DDT applied to the cement wall types was found to be significantly more effective. These insecticides usually resulted in 100% mortality for up to 12 months with a delayed mortality period of 96-144 h, depending on the insecticide evaluated and the surface type sprayed. CONCLUSION Field evaluation of these insecticides have shown that Actellic, SumiShield and Fludora®Fusion are suitable replacements for DDT. Each of these insecticides can be used for malaria vector control, requiring just one spray round. These insecticides can be used in rotation or as mosaic spraying.
Collapse
Affiliation(s)
- Rajendra Maharaj
- Malaria Research Group, South African Medical Research Council, Durban, South Africa.
| | - Ishen Seocharan
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| | - Vishan Lakan
- Malaria Research Group, South African Medical Research Council, Durban, South Africa
| | - Zuziwe Nyawo
- KwaZulu-Natal Department of Health, Malaria Control Programme, Jozini, South Africa
| | - Moses Mkhabela
- KwaZulu-Natal Department of Health, Malaria Control Programme, Jozini, South Africa
| | - Yusentha Balakrishna
- Biostatistics Research Unit, South African Medical Research Council, Durban, South Africa
| |
Collapse
|
4
|
Patt JM, Makagon A, Norton B, Marvit M, Rutschman P, Neligeorge M, Salesin J. An optical system to detect, surveil, and kill flying insect vectors of human and crop pathogens. Sci Rep 2024; 14:8174. [PMID: 38589427 PMCID: PMC11002038 DOI: 10.1038/s41598-024-57804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Sustainable and effective means to control flying insect vectors are critically needed, especially with widespread insecticide resistance and global climate change. Understanding and controlling vectors requires accurate information about their movement and activity, which is often lacking. The Photonic Fence (PF) is an optical system that uses machine vision, infrared light, and lasers to identify, track, and interdict vectors in flight. The PF examines an insect's outline, flight speed, and other flight parameters and if these match those of a targeted vector species, then a low-power, retina-safe laser kills it. We report on proof-of-concept tests of a large, field-sized PF (30 mL × 3 mH) conducted with Aedes aegypti, a mosquito that transmits dangerous arboviruses, and Diaphorina citri, a psyllid which transmits the fatal huanglongbing disease of citrus. In tests with the laser engaged, < 1% and 3% of A. aegypti and D. citri, respectfully, were recovered versus a 38% and 19% recovery when the lacer was silenced. The PF tracked, but did not intercept the orchid bee, Euglossa dilemma. The system effectively intercepted flying vectors, but not bees, at a distance of 30 m, heralding the use of photonic energy, rather than chemicals, to control flying vectors.
Collapse
Affiliation(s)
- Joseph M Patt
- United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, 34945, USA.
| | - Arty Makagon
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Bryan Norton
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Maclen Marvit
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Phillip Rutschman
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Matt Neligeorge
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| | - Jeremy Salesin
- Global Health Labs (Formerly Global Good Fund I, LLC), Bellevue, WA, 98007, USA
| |
Collapse
|
5
|
Guo Y, Hu K, Zhou J, Xie Z, Zhao Y, Zhao S, Gu J, Zhou X, Yan G, James AA, Chen XG. The dynamics of deltamethrin resistance evolution in Aedes albopictus has an impact on fitness and dengue virus type-2 vectorial capacity. BMC Biol 2023; 21:194. [PMID: 37704988 PMCID: PMC10500878 DOI: 10.1186/s12915-023-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Hu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingni Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Yijie Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaohong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, Irvine, CA, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
- , Irvine, USA.
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Kay GA, Patterson EI, Hughes GL, Lord JS, Reimer LJ. Knockdown resistance allele L1014F introduced by CRISPR/Cas9 is not associated with altered vector competence of Anopheles gambiae for o'nyong nyong virus. PLoS One 2023; 18:e0288994. [PMID: 37561739 PMCID: PMC10414658 DOI: 10.1371/journal.pone.0288994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/09/2023] [Indexed: 08/12/2023] Open
Abstract
Knockdown resistance (kdr) alleles conferring resistance to pyrethroid insecticides are widespread amongst vector populations. Previous research has suggested that these alleles are associated with changes in the vector competence of mosquitoes for arboviruses and Plasmodium, however non-target genetic differences between mosquito strains may have had a confounding effect. Here, to minimise genetic differences, the laboratory Anopheles gambiae Kisumu strain was compared to a CRISPR/Cas9 homozygous kdr L1014F mutant Kisumu-kdr line in order to examine associations with vector competence for o'nyong nyong virus (ONNV). Mosquitoes were infected using either blood feeds or intrathoracic microinjections. There were no significant differences in the prevalence of virus in mosquito body parts between kdr mutant and wildtype lines from either oral or intrathoracic injection routes. The ONNV titre was significantly higher in the legs of the wildtype strain at 7dpi following intrathoracic microinjection, but no other significant differences in viral titre were detected. ONNV was not detected in the saliva of mosquitoes from either strain. Our findings from per os infections suggest that the kdr L1014F allele is not associated with altered infection prevalence for ONNV, a key component of vector competence.
Collapse
Affiliation(s)
- Grant A. Kay
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Grant L. Hughes
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jennifer S. Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lisa J. Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
7
|
Wang L, Fontaine A, Gaborit P, Guidez A, Issaly J, Girod R, Kazanji M, Rousset D, Vignuzzi M, Epelboin Y, Dusfour I. Interactions between vector competence to chikungunya virus and resistance to deltamethrin in Aedes aegypti laboratory lines? MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:486-495. [PMID: 35762523 DOI: 10.1111/mve.12593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock-down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.
Collapse
Affiliation(s)
- Lanjiao Wang
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Albin Fontaine
- Unité de Parasitologie et Entomologie, Département des Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix Marseille Université, IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU-Méditerranée Infection, Marseille, cedex 5, France
| | - Pascal Gaborit
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Amandine Guidez
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Jean Issaly
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Romain Girod
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | | | - Dominique Rousset
- Laboratoire de Virologie, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Marco Vignuzzi
- Unité des Populations Virales et Pathogénèse, Institut Pasteur, Paris cedex 15, France
| | - Yanouk Epelboin
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| | - Isabelle Dusfour
- Vectopôle Amazonien Emile Abonnenc, Unité de contrôle et adaptation des vecteurs, Institut Pasteur de la Guyane, Cayenne cedex, France
| |
Collapse
|
8
|
Sunantaraporn S, Hortiwakul T, Kraivichian K, Siriyasatien P, Brownell N. Molecular Identification of Host Blood Meals and Detection of Blood Parasites in Culicoides Latreille (Diptera: Ceratopogonidae) Collected from Phatthalung Province, Southern Thailand. INSECTS 2022; 13:insects13100912. [PMID: 36292860 PMCID: PMC9604321 DOI: 10.3390/insects13100912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
Five hundred and fifty-nine female biting midges were collected, and seventeen species in six subgenera (Avaritia, Haemophoructus, Hoffmania, Meijerehelea, Remmia, and Trithecoides) and two groups (Clavipalpis and Shortti) were identified. The dominant Culicoides species was C. peregrinus (30.94%), followed by C. subgenus Trithecoides. From blood meal analysis of engorged biting midges, they were found to feed on cows, dogs, pigs, and avians. The majority of blood preferences of biting midges (68%; 49/72) displayed a mixed pattern of host blood DNA (cow and avian). The overall non-engorged biting midge field infectivity rate was 1.44 % (7/487). We detected Leucocytozoon sp. in three Culicoides specimens, one from each species: C. fulvus, C. oxystoma, and C. subgenus Trithecoides. Crithidia sp. was found in two C. peregrinus specimens, and Trypanosoma sp. and P. juxtanucleare were separately found in two C. guttifer. More consideration should be paid to the capacity of biting midges to transmit pathogens such as avian haemosporidian and trypanosomatid parasites. To demonstrate that these biting midges are natural vectors of trypanosomatid parasites, additional research must be conducted with a greater number of biting midges in other endemic regions.
Collapse
Affiliation(s)
- Sakone Sunantaraporn
- Medical Science Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Kanyarat Kraivichian
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narisa Brownell
- Center of Excellence in Vector Biology and Vector Borne Diseases, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|