1
|
Xu CF, Liu PC, Chapman JW, Wotton KR, Qi GJ, Wang YM, Hu G. Energy Reserve Allocation in the Trade-Off between Migration and Reproduction in Fall Armyworm. INSECTS 2024; 15:809. [PMID: 39452385 PMCID: PMC11509284 DOI: 10.3390/insects15100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Striking a trade-off between migration and reproduction becomes imperative during long-range migration to ensure proper energy allocation. However, the mechanisms involved in this trade-off remain poorly understood. Here, we used a takeoff assay to distinguish migratory from non-migratory individuals in the fall armyworm, which is a major migratory insect worldwide. Migratory females displayed delayed ovarian development and flew further and faster than non-migratory females during tethered flight. Transcriptome analyses demonstrated an enrichment of fatty acid genes across successive levels of ovarian development and different migratory behaviors. Additionally, genes with roles in phototransduction and carbohydrate digestion along with absorption function were enriched in migratory females. Consistent with this, we identified increased abdominal lipids in migratory females that were mobilized to supply energy to the flight muscles in the thorax. Our study reveals that the fall armyworm faces a trade-off in allocating abdominal triglycerides between migration and reproduction during flight. The findings provide valuable insights for future research on this trade-off and highlight the key energy components involved in this strategic balance.
Collapse
Affiliation(s)
- Chuan-Feng Xu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
- College of Ecology and Environment, YuZhang Normal University, Nanchang 330103, China
| | - Peng-Cheng Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
| | - Jason W. Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK;
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn TR10 9FE, UK
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK;
| | - Guo-Jun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Yu-Meng Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; (C.-F.X.); (P.-C.L.); (J.W.C.); (G.H.)
- Key Laboratory of Surveillance and Management of Invasive Alien Species, Department of Biology and Engineering of Environment, Guiyang University, Guiyang 550005, China
- Guizhou Education Department, Guiyang University, Guiyang 550005, China
| |
Collapse
|
2
|
Song Y, Cang X, He W, Zhang H, Wu K. Migration Activity of Spodoptera litura (Lepidoptera: Noctuidae) between China and the South-Southeast Asian Region. INSECTS 2024; 15:335. [PMID: 38786891 PMCID: PMC11121980 DOI: 10.3390/insects15050335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
The common cutworm, Spodoptera litura (F.), feeds on a wide variety of food and cash crops and is one of the most widespread and destructive agricultural pests worldwide. Migration is the biological basis of its regional population outbreaks but the seasonal movement of this pest between east and south Asia regions remains unknown. In this study, searchlight traps were used to monitor the seasonal migration of S. litura from 2019 to 2023 in Ruili City (Yunnan, China), located along the insect migratory route between China and the south Asia region. The results showed that migratory activity could occur throughout the year, with the main periods found in spring (April-May) and autumn (October-December). The ovarian development and mating status of the trapped females indicated that most individuals were in the middle or late stages of migration and that Ruili City was located in the transit area of the long-distance migration of the pest. In the migration trajectory simulation, populations of S. litura moved from northeast India, Bangladesh, and northern Myanmar to southwestern China along the southern margin of the Himalayas in spring and returned to the south Asia region in autumn. Our findings clarify the seasonal migration patterns of S. litura in China and South Asia and facilitate the development of regional cross-border monitoring and management systems for this pest.
Collapse
Affiliation(s)
- Yifei Song
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Xinzhu Cang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Wei He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haowen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| |
Collapse
|
3
|
Mlambo S, Mubayiwa M, Tarusikirwa VL, Machekano H, Mvumi BM, Nyamukondiwa C. The Fall Armyworm and Larger Grain Borer Pest Invasions in Africa: Drivers, Impacts and Implications for Food Systems. BIOLOGY 2024; 13:160. [PMID: 38534430 DOI: 10.3390/biology13030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 03/28/2024]
Abstract
Invasive alien species (IAS) are a major biosecurity threat affecting globalisation and the international trade of agricultural products and natural ecosystems. In recent decades, for example, field crop and postharvest grain insect pests have independently accounted for a significant decline in food quantity and quality. Nevertheless, how their interaction and cumulative effects along the ever-evolving field production to postharvest continuum contribute towards food insecurity remain scant in the literature. To address this within the context of Africa, we focus on the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), and the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), two of the most important field and postharvest IAS, respectively, that have invaded Africa. Both insect pests have shown high invasion success, managing to establish themselves in >50% of the African continent within a decade post-introduction. The successive and summative nature of field and postharvest damage by invasive insect pests on the same crop along its value chain results in exacerbated food losses. This systematic review assesses the drivers, impacts and management of the fall armyworm and larger grain borer and their effects on food systems in Africa. Interrogating these issues is important in early warning systems, holistic management of IAS, maintenance of integral food systems in Africa and the development of effective management strategies.
Collapse
Affiliation(s)
- Shaw Mlambo
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
| | - Macdonald Mubayiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
| | - Vimbai L Tarusikirwa
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Honest Machekano
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brighton M Mvumi
- Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
4
|
Yang H, Lu J, Zhu P, Sun Y, Hu Z, Li D, Huang J. Blue Light Attracts More Spodoptera frugiperda Moths and Promotes Their Flight Speed. INSECTS 2024; 15:129. [PMID: 38392548 PMCID: PMC10889122 DOI: 10.3390/insects15020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Light traps are a useful method for monitoring and controlling the important migratory pest, the fall armyworm, Spodoptera frugiperda. Studies have shown that S. frugiperda is sensitive to blue, green, or ultraviolet (UV) light, but the conclusions are inconsistent. Furthermore, conventional black light traps are less effective for trapping S. frugiperda. To improve the trapping efficiency of this pest, it is crucial to determine the specific wavelength to which S. frugiperda is sensitive and measure its flight capability under that wavelength. This study investigated the effects of light wavelength on the phototaxis and flight performance of S. frugiperda. The results showed that blue light was the most sensitive wavelength among the three different LED lights and was unaffected by gender. The flight capability of S. frugiperda varied significantly in different light conditions, especially for flight speed. The fastest flight speed was observed in blue light, whereas the slowest was observed in UV light compared to dark conditions. During a 12 h flight period, speed declined more rapidly in blue light and more slowly in UV, whereas speed remained stable in dark conditions. Meanwhile, the proportion of fast-flying individuals was highest under blue light, which was significantly higher than under UV light. Therefore, the use of light traps equipped with blue LED lights can improve the trapping efficiency of S. frugiperda. These results also provide insights for further research on the effects of light pollution on migratory insects.
Collapse
Affiliation(s)
- Haibo Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Jing Lu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Pinhong Zhu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Yalan Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhenjie Hu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Dingxu Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471000, China
| | - Jianrong Huang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
5
|
De Bortoli CP, Santos RF, Assirati GJ, Sun X, Hietala L, Jurat-Fuentes JL. Exposure to Cry1 Toxins Increases Long Flight Tendency in Susceptible but Not in Cry1F-Resistant Female Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2023; 15:7. [PMID: 38249013 PMCID: PMC10815942 DOI: 10.3390/insects15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The fall armyworm (JE Smith) (Spodoptera frugiperda) is a polyphagous pest targeted by selected Cry and Vip3A insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) that are produced in transgenic Bt corn and cotton. Available evidence suggests that sublethal larval exposure to Cry1Ac increases flight activity in adult Spodoptera spp. However, it is not known whether this effect is also observed in survivors from generally lethal exposure to Cry1Ac. Moreover, while multiple cases of field-evolved resistance to Bt proteins have been described in the native range of S. frugiperda, the effect of resistance on flight behavior has not been examined. Long-distance migratory flight capacity of S. frugiperda is of concern given its ongoing global spread and the possibility that migrants may be carrying resistance alleles against pesticides and Bt crops. In this study, we used rotational flight mills to test the effects of generally lethal exposure to Cry1Ac in susceptible and sublethal exposure in Cry1F-resistant S. frugiperda strains. The results detected altered pupal weight after larval feeding on diet containing Cry proteins, which only translated in significantly increased tendency for longer flights in female moths from the susceptible strain. This information has relevant implications when considering current models and assumptions for resistance management of Bt crops.
Collapse
Affiliation(s)
- Caroline P. De Bortoli
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Rafael F. Santos
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Giordano J. Assirati
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Xiaocun Sun
- Research Computing Support, Office of Information Technology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Lucas Hietala
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| |
Collapse
|
6
|
Otuka A. Prediction of the Overseas Migration of the Fall Armyworm, Spodoptera frugiperda, to Japan. INSECTS 2023; 14:804. [PMID: 37887816 PMCID: PMC10607009 DOI: 10.3390/insects14100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
(1) Background: The fall armyworm, Spodoptera frugiperda, is an invasive migratory insect pest that first arrived in Japan in early July 2019. Since then, the species has immigrated to Japan mainly in the summer monsoon season and inflicted damage mainly on the maize used as animal feed in the western region, where major immigrations occur. In this study, to know the precise arrival timing and area of S. frugiperda for purposes of pest management, a prediction method for its overseas migration from neighboring source areas was developed. (2) Methods: The method uses the Weather Research and Forecast model to give numerical weather predictions and the GEARN-insect model to predict migration. Emigration source areas on the Chinese mainland and the island of Taiwan and the insect's take-off and flight behaviors were input to the GEARN-insect model to calculate the daily migration prediction figures. (3) Results: In a prediction evaluation using 2-year six-point trapping data in Japan, the prediction method achieved an average hitting ratio of 78%. (4) Conclusions: The method has sufficient prediction quality for operational use. The technique may be applicable to other migratory moths immigrating to Japan, such as the oriental armyworm, Mythimna separata.
Collapse
Affiliation(s)
- Akira Otuka
- Institute for Plant Protection, National Agriculture and Food Research Organization, 2421 Suya, Koshi 8611192, Japan
| |
Collapse
|
7
|
Chisonga C, Chipabika G, Sohati PH, Harrison RD. Understanding the impact of fall armyworm (Spodoptera frugiperda J. E. Smith) leaf damage on maize yields. PLoS One 2023; 18:e0279138. [PMID: 37307270 DOI: 10.1371/journal.pone.0279138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Fall armyworm (Spodoptera frugiperda J. E. Smith), a serious pest of maize and other cereals, recently invaded the Old World potentially threatening the food security and incomes of millions of smallholder farmers. Being able to assess the impacts of a pest on yields is fundamental to developing Integrated Pest Management (IPM) approaches. Hence, working with an early maturing, medium maturing and late maturing variety, we inoculated maize plants with 2nd instar S. frugiperda larvae at V5, V8, V12, VT and R1 growth stages to investigate the effects of FAW induced damage on yield. Different plants were inoculated 0-3 times and larvae were removed after 1 or 2 weeks to generate a wide range of damage profiles. We scored plants for leaf damage at 3, 5 and 7 weeks after emergence (WAE) using the 9 point Davis scale. While at harvest we assessed ear damage (1-9 scale), and recorded plant height and grain yield per plant. We used Structural Equation Models to assess the direct effects of leaf damage on yield and indirect effects via plant height. For the early and medium maturing varieties leaf damage at 3 and 5 WAE, respectively, had significant negative linear effects on grain yield. In the late maturing variety, leaf damage at 7 WAE had an indirect effect on yield through a significant negative linear effect on plant height. However, despite the controlled screenhouse conditions, in all three varieties leaf damage explained less than 3% of the variation in yield at the plant level. Overall, these results indicate that S. frugiperda induced leaf damage has a slight but detectable impact on yield at a specific plant developmental stage, and our models will contribute to the development of decision-support tools for IPM. However, given the low average yields obtained by smallholders in sub-Saharan Africa and the relatively low levels of FAW induced leaf damage recorded in most areas, IPM strategies should focus on interventions aimed at improving plant vigour (e.g. through integrated soil fertility management) and the role of natural enemies, as these are likely to result in greater yield gains at lower cost than a focus on FAW control.
Collapse
Affiliation(s)
- Chipo Chisonga
- CIFOR-ICRAF, Zambia Office, St Eugene Office Park, Lusaka, Zambia
- Department of Plant Science, School of Agriculture Sciences, University of Zambia, Lusaka, Zambia
| | - Gilson Chipabika
- Department of Plant Science, School of Agriculture Sciences, University of Zambia, Lusaka, Zambia
| | - Philemon H Sohati
- Department of Plant Science, School of Agriculture Sciences, University of Zambia, Lusaka, Zambia
| | - Rhett D Harrison
- CIFOR-ICRAF, Zambia Office, St Eugene Office Park, Lusaka, Zambia
| |
Collapse
|
8
|
Wang J, Huang Y, Huang L, Dong Y, Huang W, Ma H, Zhang H, Zhang X, Chen X, Xu Y. Migration risk of fall armyworm ( Spodoptera frugiperda) from North Africa to Southern Europe. FRONTIERS IN PLANT SCIENCE 2023; 14:1141470. [PMID: 37077648 PMCID: PMC10106561 DOI: 10.3389/fpls.2023.1141470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
With the development of globalization and agriculture trade, as well as its own strong migratory capacity, fall armyworm (FAW) (Spodoptera frugiperda) (J.E. Smith) has invaded more than 70 countries, posing a serious threat to the production of major crops in these areas. FAW has now also been detected in Egypt in North Africa, putting Europe, which is separated from it only by the Mediterranean Sea, at high risk of invasion. Therefore, this study integrated multiple factors of insect source, host plant, and environment to provide a risk analysis of the potential trajectories and time periods of migration of FAW into Europe in 2016~2022. First, the CLIMEX model was used to predict the annual and seasonal suitable distribution of FAW. The HYSPLIT numerical trajectory model was then used to simulate the possibility of the FAW invasion of Europe through wind-driven dispersal. The results showed that the risk of FAW invasion between years was highly consistent (P<0.001). Coastal areas were most suitable for the expansion of the FAW, and Spain and Italy had the highest risk of invasion, with 39.08% and 32.20% of effective landing points respectively. Dynamic migration prediction based on spatio-temporal data can enable early warning of FAW, which is important for joint multinational pest management and crop protection.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Yanru Huang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linsheng Huang
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Yingying Dong
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjiang Huang
- Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- International Research Center of Big Data for Sustainable Development Goals, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiqin Ma
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Hansu Zhang
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Xueyan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Chen
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Yunlei Xu
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| |
Collapse
|
9
|
Harrison R, Banda J, Chipabika G, Chisonga C, Katema C, Mabote Ndalamei D, Nyirenda S, Tembo H. Low Impact of Fall Armyworm (Spodoptera frugiperda Smith) (Lepidoptera: Noctuidae) Across Smallholder Fields in Malawi and Zambia. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1783-1789. [PMID: 36515111 PMCID: PMC9748589 DOI: 10.1093/jee/toac113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 06/17/2023]
Abstract
Fall armyworm (Spodoptera frugiperda Smith), a serious pest of cereals from the Americas, has spread across sub-Saharan Africa and Asia since 2016, threatening the food security and incomes of millions of smallholder farmers. To measure the impact of S. frugiperda under different management approaches, we established on-farm trials across 12 landscapes (615-1,379 mm mean annual rainfall) in Malawi and Zambia during the 2019/2020 and 2020/2021 seasons. Here we present the results from our conventional tillage, monocrop maize, no pesticide treatment, which served to monitor the background S. frugiperda impact in the absence of control measures. Median plot-level S. frugiperda incidence ranged between 0.00 and 0.52 across landscapes. Considering severe leaf damage (Davis score ≥5), the proportion of affected plants varied between 0.00 and 0.30 at the plot scale, but only 3% of plots had ≥10% severely damaged plants. While incidence and damage severity varied substantially among sites and seasons, our models indicate that they were lower in high tree cover landscapes, in the late season scouting, and in the 2020/2021 season. Yield could not be predicted from S. frugiperda incidence or leaf damage. Our results suggest S. frugiperda impacts may have been overestimated at many sites across sub-Saharan Africa. S. frugiperda incidence and damage declined through the cropping season, indicating that natural mortality factors were limiting populations, and none of our plots were heavily impacted. Long-term S. frugiperda management should be based on Integrated Pest Management (IPM) principles, including minimising the use of chemical pesticides to protect natural enemies.
Collapse
Affiliation(s)
| | - John Banda
- Zambian Agricultural Research Institute, Mt Mukulu Research Station, Chilanga, Zambia
| | - Gilson Chipabika
- Zambian Agricultural Research Institute, Mt Mukulu Research Station, Chilanga, Zambia
| | | | - Christopher Katema
- World Agroforestry (ICRAF), Chitedze Agricultural Research Station, Lilongwe, Malawi
| | | | - Stephen Nyirenda
- Department of Agricultural Research Services (DARS), Bvumbwe Agricultural Research Station, Limbe, Malawi
| | - Howard Tembo
- Zambian Agricultural Research Institute, Mt Mukulu Research Station, Chilanga, Zambia
| |
Collapse
|
10
|
Yan XR, Wang ZY, Feng SQ, Zhao ZH, Li ZH. Impact of Temperature Change on the Fall Armyworm, Spodoptera frugiperda under Global Climate Change. INSECTS 2022; 13:981. [PMID: 36354805 PMCID: PMC9693636 DOI: 10.3390/insects13110981] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith, 1797), known as an important agricultural pest around the world, is indigenous to the tropical-subtropical regions in the Western Hemisphere, although its distribution has expanded over large parts of America, Africa, Asia and Oceania in the last few years. The pest causes considerable costs annually coupled with its strong invasion propensity. Temperature is identified as the dominant abiotic factor affecting herbivorous insects. Several efforts have reported that temperature directly or indirectly influences the geographic distribution, phenology and natural enemies of the poikilothermal FAW, and thus may affect the damage to crops, e.g., the increased developmental rate accelerates the intake of crops at higher temperatures. Under some extreme temperatures, the FAW is likely to regulate various genes expression in response to environmental changes, which causes a wider viability and possibility of invasion threat. Therefore, this paper seeks to review and critically consider the variations of developmental indicators, the relationships between the FAW and its natural enemies and the temperature tolerance throughout its developmental stage at varying levels of heat/cold stress. Based on this, we discuss more environmentally friendly and economical control measures, we put forward future challenges facing climate change, we further offer statistical basics and instrumental guidance significance for informing FAW pest forecasting, risk analyses and a comprehensive management program for effective control globally.
Collapse
Affiliation(s)
- Xiao-Rui Yan
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhen-Ying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Qian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zi-Hua Zhao
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Zhi-Hong Li
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
11
|
He Y, Wang K, Du G, Zhang Q, Li B, Zhao L, He P, Chen B. Temporal and Spatial Distribution Patterns of Spodoptera frugiperda in Mountain Maize Fields in China. INSECTS 2022; 13:938. [PMID: 36292886 PMCID: PMC9604361 DOI: 10.3390/insects13100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major pest of maize worldwide. This pest colonized maize in Shizong, Qujing, Yunnan, China in 2019. To explore the temporal and spatial distribution of S. frugiperda in local fields, "W" type 5-point sampling was performed from 2020 to 2021. The spatial distribution was analyzed using the aggregation index, Iwao's regression, and Taylor's power law. The temporal distribution showed two peaks for both 2020 and 2021 when the density of eggs, larvae, and adults was high throughout the maize growth period. Additionally, 1st and 3rd instar larvae were higher in number during the maize seedling, jointing, and spinning stages. Fourth to 6th instar larvae were higher in number after the tasseling stage. Additionally, the spatial distribution results showed that 1st to 3rd instar larvae were aggregated, while 4th to 6th instar larvae were uniformly distributed in mountain maize fields. This study provides monitoring data for S. frugiperda and clarifies the temporal and spatial distribution characteristics for larvae in mountain maize fields. Further, it also provides guidance for investigation into population dynamics and the development of predictive models for integrated S. frugiperda management.
Collapse
Affiliation(s)
- Yanyan He
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Kun Wang
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guangzu Du
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Qiong Zhang
- Plant Protection and Inspection Station of Qujing City, Qujing 655000, China
| | - Bin Li
- Plant Protection and Inspection Station of Shizong County, Shizong 655700, China
| | - Lin Zhao
- Plant Protection and Inspection Station of Qujing City, Qujing 655000, China
| | - Ping He
- Plant Protection and Inspection Station of Qujing City, Qujing 655000, China
| | - Bin Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|