1
|
Zhang C, Wang J, Yao T, Hu J, Sun F, Feng C, Sun Z, Shao Y, Wang Z, Wu J, Huang Y. Proteomic analysis across aged tissues reveals distinct signatures and the crucial involvement of midgut barrier function in the regulation of aging. Aging Cell 2025; 24:e14344. [PMID: 39319447 PMCID: PMC11709110 DOI: 10.1111/acel.14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The process of aging is a natural phenomenon characterized by gradual deterioration in biological functions and systemic homeostasis, which can be modulated by both genetic and environmental factors. Numerous investigations conducted on model organisms, including nematodes, flies, and mice, have elucidated several pivotal aging pathways, such as insulin signaling and AMPK signaling. However, it remains uncertain whether the regulation of the aging process is uniform or diverse across different tissues and whether manipulating the same aging factor can result in consistent outcomes in various tissues. In this study, we utilize the Drosophila organism to investigate tissue-specific proteome signatures during the aging process. Although distinct proteins undergo changes in aged tissues, certain common altered functional networks are constituently identified across different tissues, including the decline of the mitochondrial ribosomal network, autophagic network, and anti-ROS defense networks. Furthermore, downregulation of insulin receptor (InR) in the midguts, muscle, and central nervous system (CNS) of flies leads to a significant extension in fly lifespans. Notably, despite manipulating the same aging gene InR, diverse alterations in proteins are observed across different tissues. Importantly, knockdown of InR in the midguts leads to a distinct proteome compared with other tissues, resulting in enhanced actin nucleation and glutathione metabolism, while attenuating age-related elevation of serine proteases. Consequently, knockdown of InR results in rejuvenation of the integrity of the midgut barrier and augmentation of anti-ROS defense capabilities. Our findings suggest that the barrier function of the midgut plays a pivotal role in defending against aging, underscoring the paramount importance of maintaining optimal gut physiology to effectively delay the aging process. Moreover, when considering age-related changes across various tissues, it is more reasonable to identify functional networks rather than focusing solely on individual proteins.
Collapse
Affiliation(s)
- Congying Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jinlong Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Tianzhao Yao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jiaxin Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Chunlu Feng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Zhendong Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Yuzhuo Shao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Zhu Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
| | - Jiarui Wu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesHangzhouChina
| | - Yunpeng Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesHangzhouChina
| |
Collapse
|
2
|
Wang Y, Xu HQ, Han HL, Chen D, Jiang H, Smagghe G, Wang JJ, Wei D. CRISPR/Cas9-mediated knockout of a male accessory glands-specific gene takeout1 decreases the fecundity of Zeugodacus cucurbitae female. PEST MANAGEMENT SCIENCE 2024; 80:4399-4409. [PMID: 38676538 DOI: 10.1002/ps.8145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The melon fly, Zeugodacus cucurbitae (Coquillett), is an invasive Tephritidae pest with robust fertility. The male accessory glands (MAGs) form a vital organ that ensures insect reproductive efficiency. Most of the secreted proteins by MAGs exhibit a male bias expression. Takeout, one of these proteins, is abundantly present in the MAGs of many insects. RESULTS In this study, we identified 32 takeout genes in Z. cucurbitae. The phylogenetic analysis and multiple sequence alignment results showed that Zctakeout1 is the most related homolog to the MAGs-specific takeout in Tephritidae. The real-time quantitative PCR results showed that Zctakeout1 was exclusively expressed in the male adult stage, and its expression level gradually increased with the increase in age and then remained stable at the sexually matured stage. The distribution among tissues demonstrated the specific expression of Zctakeout1 in the MAGs, and fluorescence immunohistochemical results confirmed the presence of Zctakeout1 in close proximity to binuclear cells of the mesoderm epidermal MAGs. In continuation, CRISPR/Cas9-mediated genome editing was employed, resulting in successfully generating a homozygous strain with an +8 bp insertion. The mating experiments with the Zctakeout1-/- males resulted in significant reductions in both the mating rate and egg production of females. CONCLUSION These findings prove that the MAGs-specific Zctakeout1 is essential in regulating fecundity in female Z. cucurbitae fruit flies. Our data suggests its utilization in future essential insect-specific gene-directed sterility insect technique (SIT) by the genetic manipulation to keep these important Tephritidae populations under control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hui-Qian Xu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hong-Liang Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dong Chen
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hongbo Jiang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guy Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jin-Jun Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Dong Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, Guiyang University, Guiyang, China
| |
Collapse
|
3
|
Liu XP, Liu CY, Feng YJ, Guo XK, Zhang LS, Wang MQ, Li YY, Zeng FR, Nolan T, Mao JJ. Male vitellogenin regulates gametogenesis through a testis-enriched big protein in Chrysopa pallens. INSECT MOLECULAR BIOLOGY 2024; 33:17-28. [PMID: 37707297 DOI: 10.1111/imb.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chang-Yan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, People's Republic of China
| | - Yan-Jiao Feng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xing-Kai Guo
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Li-Sheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng-Qing Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yu-Yan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fan-Rong Zeng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jian-Jun Mao
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
4
|
Landis GN, Bell HS, Peng O, Bognar B, Tong A, Manea TD, Bao H, Han X, Tower J. Dhr96[1] mutation and maternal tudor[1] mutation increase life span and reduce the beneficial effects of mifepristone in mated female Drosophila. PLoS One 2023; 18:e0292820. [PMID: 38127988 PMCID: PMC10735022 DOI: 10.1371/journal.pone.0292820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/28/2023] [Indexed: 12/23/2023] Open
Abstract
Mating and receipt of male Sex Peptide hormone cause increased egg laying, increased midgut size and decreased life span in female Drosophila. Feeding mated females with the synthetic steroid mifepristone decreases egg production, reduces midgut size, and increases life span. Here, several gene mutations were assayed to investigate possible mechanisms for mifepristone action. Drosophila Dhr96 is a hormone receptor, and a key positive regulator of midgut lipid uptake and metabolism. Dhr96[1] null mutation increased female life span, and reduced the effects of mifepristone on life span, suggesting that Dhr96[1] mutation and mifepristone may act in part through the same mechanism. Consistent with this idea, lipidomics analysis revealed that mating increases whole-body levels of triglycerides and fatty-acids in triglycerides, and these changes are reversed by mifepristone. Maternal tudor[1] mutation results in females that lack the germ-line and produce no eggs. Maternal tudor[1] mutation increased mated female life span, and reduced but did not eliminate the effects of mating and mifepristone on life span. This indicates that decreased egg production may be related to the life span benefits of mifepristone, but is not essential. Mifepristone increases life span in w[1118] mutant mated females, but did not increase life span in w[1118] mutant virgin females. Mifepristone decreased egg production in w[1118] mutant virgin females, indicating that decreased egg production is not sufficient for mifepristone to increase life span. Mifepristone increases life span in virgin females of some, but not all, white[+] and mini-white[+] strains. Backcrossing of mini-white[+] transgenes into the w[1118] background was not sufficient to confer a life span response to mifepristone in virgin females. Taken together, the data support the hypothesis that mechanisms for mifepristone life span increase involve reduced lipid uptake and/or metabolism, and suggest that mifepristone may increase life span in mated females and virgin females through partly different mechanisms.
Collapse
Affiliation(s)
- Gary N. Landis
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hans S. Bell
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Oscar Peng
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Brett Bognar
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Andy Tong
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Tomás D. Manea
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - John Tower
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
5
|
N. Landis G, Ko S, Peng O, Bognar B, Khmelkov M, S. Bell H, Tower J. A screen of small molecule and genetic modulators of life span in female Drosophila identifies etomoxir, RH5849 and unanticipated temperature effects. Fly (Austin) 2022; 16:397-413. [PMID: 36412257 PMCID: PMC9683069 DOI: 10.1080/19336934.2022.2149209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Mifepristone increases life span in female Drosophila melanogaster, and its molecular target(s) remain unclear. Here small molecule and genetic interventions were tested for ability to mimic mifepristone, or to decrease life span in a way that can be rescued by mifepristone. Etomoxir inhibits lipid metabolism, and significantly increased life span in virgin and mated females, but not males, at 50 µM concentration. Pioglitazone is reported to activate both mammalian PPARγ and its Drosophila homolog Eip75B. Pioglitazone produced minor and inconsistent benefits for female Drosophila life span, and only at the lowest concentrations tested. Ecdysone is a Drosophila steroid hormone reported to regulate responses to mating, and RH5849 is a potent mimic of ecdysone. RH5849 reduced virgin female life span, and this was partly rescued by mifepristone. Mifepristone did not compete with RH5849 for activation of an ecdysone receptor (EcR)-responsive transgenic reporter, indicating that the relevant target for mifepristone is not EcR. The conditional GAL4/GAL80ts system was used in attempt to test the effect of an Eip75B RNAi construct on female life span. However, the 29°C temperature used for induction reduced or eliminated mating-induced midgut hypertrophy, the negative life span effects of mating, and the positive life span effects of mifepristone. Even when applied after mating was complete, a shift to 29°C temperature reduced mating-induced midgut hypertrophy by half, and the life span effects of mating by 4.8-fold. Taken together, these results identify promising small molecules for further analysis, and inform the design of experiments involving the GAL4/GAL80ts system.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Ko
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Oscar Peng
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Brett Bognar
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael Khmelkov
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Hans S. Bell
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|