1
|
Wang L, Liu T, Xiao L, Zhang H, Wang C, Zhang W, Zhang M, Wang Y, Deng S. Investigating the Potential of X-Ray-Based Cancer Treatment Equipment for the Sterile Insect Technique in Aedes aegypti Control Programs. INSECTS 2024; 15:898. [PMID: 39590497 PMCID: PMC11594760 DOI: 10.3390/insects15110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
The sterile insect technique (SIT) stands as an eco-friendly approach for mosquito control, but it is impeded by the limited availability of γ-ray radiation source. This research sought to investigate a different radiation source-the Varian Clinac 23EX linear accelerator, which is frequently used for X-ray therapy in cancer treatment. Evaluation parameters including emergence rate, average survival time, induced sterility (IS), male mating competitiveness of irradiated males and fecundity (the number of eggs per female per batch), and the egg hatch rate of females mated with irradiated males were assessed to gauge the application potential of this cancer treatment equipment in the realm of the SIT. The results indicated that X-rays from radiation therapy equipment can effectively suppress the hatch rate of offspring mosquitoes without adversely affecting the emergence rate of irradiated males or the fecundity of females. In addition, at an X-ray dose of 60 Gy, the induced sterility in Ae. aegypti was comparable to the sterility induced by 40 Gy of γ-rays with both treatments resulting in 99.6% sterility. Interestingly, when a release ratio of 7:1 (irradiated males:unirradiated males) was used to competitively mate with females, the IS results resulted by 60 Gy X-rays and 40 Gy γ-rays were still at 70.3% and 73.7%, respectively. In conclusion, the results underscored the potential of the Varian Clinac 23EX linear accelerator as an X-ray source in SIT research.
Collapse
Affiliation(s)
- Linmin Wang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China;
| | - Liang Xiao
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| | - Haiting Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Cunchen Wang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Weixian Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Mao Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China;
| | - Shengqun Deng
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| |
Collapse
|
2
|
Marquereau L, Yamada H, Damiens D, Leclercq A, Derepas B, Brengues C, Dain BW, Lejarre Q, Proudhon M, Bouyer J, Gouagna LC. Upscaling irradiation protocols of Aedes albopictus pupae within an SIT program in Reunion Island. Sci Rep 2024; 14:12117. [PMID: 38802536 PMCID: PMC11130285 DOI: 10.1038/s41598-024-62642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024] Open
Abstract
The implementation of the sterile insect technique against Aedes albopictus relies on many parameters, in particular on the success of the sterilization of males to be released into the target area in overflooding numbers to mate with wild females. Achieving consistent sterility levels requires efficient and standardized irradiation protocols. Here, we assessed the effects of exposure environment, density of pupae, irradiation dose, quantity of water and location in the canister on the induced sterility of male pupae. We found that the irradiation of 2000 pupae in 130 ml of water and with a dose of 40 Gy was the best combination of factors to reliably sterilize male pupae with the specific irradiator used in our control program, allowing the sterilization of 14000 pupae per exposure cycle. The location in the canister had no effect on induced sterility. The results reported here allowed the standardization and optimization of irradiation protocols for a Sterile Insect Technique program to control Ae. albopictus on Reunion Island, which required the production of more than 300,000 sterile males per week.
Collapse
Affiliation(s)
- Lucie Marquereau
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France.
| | - Hanano Yamada
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400, Vienna, Austria
| | - David Damiens
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Antonin Leclercq
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Brice Derepas
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Cécile Brengues
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Brice William Dain
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Quentin Lejarre
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Mickael Proudhon
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France
| | - Jeremy Bouyer
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, IAEA Vienna, Wagramer Strasse 5, 1400, Vienna, Austria
- ASTRE, CIRAD, INRAE, University of Montpellier, 34398, Montpellier, France
- ASTRE, CIRAD, INRAE, University of Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Louis Clément Gouagna
- UMR Mivegec (Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle), IRD-CNRS-Univ. Montpellier, Représentation IRD la Réunion - PTU, 97495, Sainte Clotilde Cedex, La Réunion, France.
- UMR Mivegec, IRD-Délégation Régionale Occitanie, 34394, Montpellier, France.
| |
Collapse
|
3
|
Kaboré BA, Taqi SD, Mkinga A, Morales Zambrana AE, Mach RL, Vreysen MJB, de Beer CJ. Radiation dose fractionation and its potential hormetic effects on male Glossina palpalis gambiensis (Diptera: Glossinidae): a comparative study of reproductive and flight quality parameters. Parasite 2024; 31:4. [PMID: 38334684 PMCID: PMC10854482 DOI: 10.1051/parasite/2024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/03/2023] [Indexed: 02/10/2024] Open
Abstract
One of the most critical factors for implementing the sterile insect technique for the management of tsetse is the production of large quantities of highly competitive sterile males in the field. Several factors may influence the biological quality of sterile males, but optimizing the irradiation protocols to limit unwanted somatic cell damage could improve male performance. This study evaluated the effect of fractionation of gamma radiation doses on the fertility and flight quality of male Glossina palpalis gambiensis. Induced sterility was assessed by mating irradiated males with virgin fertile females. Flight quality was assessed using a standard protocol. The male flies were irradiated as pupae on day 23-27 post larviposition with 110 Gy, either in a single dose or in fractionations of 10 + 100 Gy and 50 + 60 Gy separated by 1-, 2- and 3-day intervals or 55 + 55 Gy separated by 4-, 8-, and 24-hour intervals. All treatments induced more than 90% sterility in females mated with irradiated males, as compared with untreated males. No significant differences were found in emergence rate or flight propensity between fractionated and single radiation doses, nor between the types of fractionations. Overall, the 50(D0) + 60(D1) Gy dose showed slightly higher induced sterility, flight propensity, and survival of males under feeding regime. Dose fractionation resulted in only small improvements with respect to flight propensity and survival, and this should be traded off with the required increase in labor that dose fractionation entails, especially in larger control programs.
Collapse
Affiliation(s)
- Bénéwendé Aristide Kaboré
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Gumpendorfer Straße 1a 1060 Vienna Austria
- Insectarium de Bobo-Dioulasso-Campagne d’Eradication de la mouche Tsétsé et de la Trypanosomose Bobo-Dioulasso BP 1087 Burkina Faso
| | - Syeda Dua Taqi
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
| | - Athumani Mkinga
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
- Vector and Vector-Borne Diseases Institute, Tanzania Veterinary Laboratory Agency 1026 Tanga Tanzania
| | - Anibal E Morales Zambrana
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Gumpendorfer Straße 1a 1060 Vienna Austria
| | - Marc JB Vreysen
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
| | - Chantel J de Beer
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre 1400 Vienna Austria
| |
Collapse
|
4
|
Kaboré BA, Nawaj A, Maiga H, Soukia O, Pagabeleguem S, Ouédraogo/Sanon MSG, Vreysen MJB, Mach RL, de Beer CJ. X-rays are as effective as gamma-rays for the sterilization of Glossina palpalis gambiensis Vanderplank, 1911 (Diptera: Glossinidae) for use in the sterile insect technique. Sci Rep 2023; 13:17633. [PMID: 37848516 PMCID: PMC10582188 DOI: 10.1038/s41598-023-44479-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
An area-wide integrated pest management strategy with a sterile insect technique (SIT) component requires a radiation source for the sterilisation of male insects. Self-contained gamma irradiators, which were exclusively used in past SIT programmes, are now facing increasing constraints and challenges due to stringent regulations. As a potential alternative, new generation high output X-ray irradiators have been proposed. The feasibility of using X-ray irradiators was assessed by comparing the effects of both gamma- and X-ray irradiators on biological parameters of Glossina palpalis gambiensis (Vanderplank, 1911), that are important for SIT applications. The gamma irradiator Foss Model 812 and two X-ray irradiators, the Rad Source 2400 and the blood irradiator Raycell Mk2 were used. Glossina palpalis gambiensis males were exposed to radiation as pupae. A radiation dose of 110 Gy or above induced more than 97% sterility in females that mated with the irradiated males for all the irradiators. Adult emergence rate, flight propensity, survival and mating performance did not differ between gamma- and X-rays irradiators. These results suggest that irradiating pupae with a dose of 110 Gy is optimal for both gamma-and X-ray irradiators used in this study, to achieve a sterility of approximately 99%. Similar research on other tsetse species could gradually phase out the use of gamma-ray irradiators in favour of X-rays irradiators, especially for smaller SIT programmes.
Collapse
Affiliation(s)
- Bénéwendé Aristide Kaboré
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria.
- Insectarium de Bobo-Dioulasso-Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose, Bobo-Dioulasso, Burkina Faso.
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria.
| | - Arooj Nawaj
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Hamidou Maiga
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
- Institut de Recherche en Sciences de la Santé/Direction Régionale de l'Ouest (IRSS-DRO), Bobo-Dioulasso, Burkina Faso
| | - Olga Soukia
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo-Dioulasso-Campagne d'Eradication de la mouche Tsé-tsé et de la Trypanosomose, Bobo-Dioulasso, Burkina Faso
| | | | - Marc J B Vreysen
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Chantel J de Beer
- Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, Vienna, Austria
| |
Collapse
|
5
|
Wang LM, Li N, Zhang M, Tang Q, Lu HZ, Zhou QY, Niu JX, Xiao L, Peng ZY, Zhang C, Liu M, Wang DQ, Deng SQ. The sex pheromone heptacosane enhances the mating competitiveness of sterile Aedes aegypti males. Parasit Vectors 2023; 16:102. [PMID: 36922826 PMCID: PMC10015913 DOI: 10.1186/s13071-023-05711-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Aedes aegypti is a vector that transmits various viral diseases, including dengue and Zika. The radiation-based sterile insect technique (SIT) has a limited effect on mosquito control because of the difficulty in irradiating males without reducing their mating competitiveness. In this study, the insect sex pheromone heptacosane was applied to Ae. aegypti males to investigate whether it could enhance the mating competitiveness of irradiated males. METHODS Heptacosane was smeared on the abdomens of Ae. aegypti males that were allowed to mate with untreated virgin females. The insemination rate was used to assess the attractiveness of heptacosane-treated males to females. The pupae were irradiated with different doses of X-rays and γ-rays, and the emergence, survival time, egg number, and hatch rate were detected to find the optimal dose of X-ray and γ-ray radiation. The males irradiated at the optimal dose were smeared with heptacosane, released in different ratios with untreated males, and mated with females. The effect of heptacosane on the mating competitiveness of irradiated mosquitoes was then evaluated by the hatch rate, induced sterility, and mating competitiveness index. RESULTS Applying heptacosane to Ae. aegypti males significantly increased the insemination rate of females by 20%. Pupal radiation did not affect egg number but significantly reduced survival time and hatch rate. The emergence of the pupae was not affected by X-ray radiation but was affected by γ-ray radiation. Pupae exposed to 60 Gy X-rays and 40 Gy γ-rays were selected for subsequent experiments. After 60 Gy X-ray irradiation or 40 Gy γ-ray irradiation, the average hatch rate was less than 0.1%, and the average survival time was more than 15 days. Moreover, at the same release ratio, the hatch rate of the irradiated group perfumed with heptacosane was lower than that of the group without heptacosane. Conversely, the male sterility and male mating competitiveness index were significantly increased due to the use of heptacosane. CONCLUSIONS The sex pheromone heptacosane enhanced the interaction between Ae. aegypti males and females. Perfuming males irradiated by X-rays or γ-rays with heptacosane led to a significant increase in mating competitiveness. This study provided a new idea for improving the application effect of SIT.
Collapse
Affiliation(s)
- Lin-Min Wang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ni Li
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mao Zhang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qi Tang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Hong-Zheng Lu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qing-Ya Zhou
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jia-Xuan Niu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liang Xiao
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhe-Yu Peng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao Zhang
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Miao Liu
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Duo-Quan Wang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China.
| | - Sheng-Qun Deng
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|