Cai J, Xie D, Kong F, Zhai Z, Zhu Z, Zhao Y, Xu Y, Sun T. Effect and Mechanism of Rapamycin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies.
J Alzheimers Dis 2024;
99:53-84. [PMID:
38640155 DOI:
10.3233/jad-231249]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background
Alzheimer's disease (AD), the most common form of dementia, remains long-term and challenging to diagnose. Furthermore, there is currently no medication to completely cure AD patients. Rapamycin has been clinically demonstrated to postpone the aging process in mice and improve learning and memory abilities in animal models of AD. Therefore, rapamycin has the potential to be significant in the discovery and development of drugs for AD patients.
Objective
The main objective of this systematic review and meta-analysis was to investigate the effects and mechanisms of rapamycin on animal models of AD by examining behavioral indicators and pathological features.
Methods
Six databases were searched and 4,277 articles were retrieved. In conclusion, 13 studies were included according to predefined criteria. Three authors independently judged the selected literature and methodological quality. Use of subgroup analyses to explore potential mechanistic effects of rapamycin interventions: animal models of AD, specific types of transgenic animal models, dosage, and periodicity of administration.
Results
The results of Morris Water Maze (MWM) behavioral test showed that escape latency was shortened by 15.60 seconds with rapamycin therapy, indicating that learning ability was enhanced in AD mice; and the number of traversed platforms was increased by 1.53 times, indicating that the improved memory ability significantly corrected the memory deficits.
CONCLUSIONS
Rapamycin therapy reduced age-related plaque deposition by decreasing AβPP production and down-regulating β-secretase and γ-secretase activities, furthermore increased amyloid-β clearance by promoting autophagy, as well as reduced tau hyperphosphorylation by up-regulating insulin-degrading enzyme levels.
Collapse