1
|
Alves JDS, Pasqualotto L, Soares VN, Trombin de Souza M, Trombin de Souza M, Rakes M, Horikoshi RJ, Miraldo LL, Ovejero RLF, Berger GU, Bernardi D. Life table study of Rachiplusia nu (Lepidoptera: Noctuidae) on different food sources and artificial diet. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2135-2142. [PMID: 39255407 DOI: 10.1093/jee/toae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
Rachiplusia nu Guenée is a polyphagous species able to develop on several cultivated and non-cultivated host plants. However, basic life history information about this pest on hosts is scarce. In this study, R. nu larvae did not survive on leaves of non-Bt corn, wheat, Bt cotton that expresses proteins Cry1Ac+Cry2Ab2 or on Intacta2 Xtend soybean that expresses the Cry1A.105/Cry2Ab2/Cry1Ac proteins. Rachiplusia nu showed a viable egg-to-adult biological cycle (54%-66.3%) on non-Bt soybean, sunflower, canola, vetch, Persian clover, alfalfa, bean, and forage turnip hosts, similar to larvae raised on the artificial diet. In addition, R. nu was unable to complete larval development on non-Bt cotton, and only 45.2% of R. nu larvae reached the pupal stage when fed leaves of intacta RR2 PRO soybean that expresses the Cry1Ac protein. Larval and pupal mass of surviving insects on Cry1Ac soybean leaves were also lower (larval: 0.104 g; pupal: 0.099 g) in relation to other food sources (larval: 0.165-0.189 g; pupal: 0.173-0.192 g). The total fecundity of R. nu on Cry1Ac soybean leaves was ≈65% lower in relation to other food sources. This fact caused ≈60% the net reproductive rate (Ro) and intrinsic rate of increase (rm) when compared to other food sources. Our findings indicate that the Cry1Ac soybean negatively affects the biological parameters of R. nu. Non-Bt soybean, sunflower, canola, vetch, Persian clover, alfalfa, bean, and forage turnip are viable food sources for the survival and development of R. nu.
Collapse
Affiliation(s)
- Juarez da S Alves
- Department of Crop Protection, Federal University of Pelotas (UFPel), Capão do Leão, Brazil
| | - Larissa Pasqualotto
- Department of Crop Protection, Federal University of Pelotas (UFPel), Capão do Leão, Brazil
| | - Vanessa N Soares
- Department of Crop Protection, Federal University of Pelotas (UFPel), Capão do Leão, Brazil
| | | | | | - Matheus Rakes
- Department of Crop Protection, Federal University of Pelotas (UFPel), Capão do Leão, Brazil
| | | | | | | | - Geraldo U Berger
- Departament of Entomology, Bayer Crop Science Brazil, São Paulo, Brazil
| | - Daniel Bernardi
- Department of Crop Protection, Federal University of Pelotas (UFPel), Capão do Leão, Brazil
| |
Collapse
|
2
|
Liu Z, Liao C, Zou L, Jin M, Shan Y, Quan Y, Yao H, Zhang L, Wang P, Liu Z, Wang N, Li A, Liu K, Tabashnik BE, Heckel DG, Wu K, Xiao Y. Retrotransposon-mediated disruption of a chitin synthase gene confers insect resistance to Bacillus thuringiensis Vip3Aa toxin. PLoS Biol 2024; 22:e3002704. [PMID: 38954724 PMCID: PMC11249258 DOI: 10.1371/journal.pbio.3002704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/15/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has been produced by transgenic crops to counter pest resistance to the widely used crystalline (Cry) insecticidal proteins from Bt. To proactively manage pest resistance, there is an urgent need to better understand the genetic basis of resistance to Vip3Aa, which has been largely unknown. We discovered that retrotransposon-mediated alternative splicing of a midgut-specific chitin synthase gene was associated with 5,560-fold resistance to Vip3Aa in a laboratory-selected strain of the fall armyworm, a globally important crop pest. The same mutation in this gene was also detected in a field population. Knockout of this gene via CRISPR/Cas9 caused high levels of resistance to Vip3Aa in fall armyworm and 2 other lepidopteran pests. The insights provided by these results could help to advance monitoring and management of pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chongyu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Luming Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yudong Quan
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| | - Hui Yao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhuangzhuang Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Na Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Anjing Li
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - David G. Heckel
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
De Bortoli CP, Santos RF, Assirati GJ, Sun X, Hietala L, Jurat-Fuentes JL. Exposure to Cry1 Toxins Increases Long Flight Tendency in Susceptible but Not in Cry1F-Resistant Female Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECTS 2023; 15:7. [PMID: 38249013 PMCID: PMC10815942 DOI: 10.3390/insects15010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The fall armyworm (JE Smith) (Spodoptera frugiperda) is a polyphagous pest targeted by selected Cry and Vip3A insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) that are produced in transgenic Bt corn and cotton. Available evidence suggests that sublethal larval exposure to Cry1Ac increases flight activity in adult Spodoptera spp. However, it is not known whether this effect is also observed in survivors from generally lethal exposure to Cry1Ac. Moreover, while multiple cases of field-evolved resistance to Bt proteins have been described in the native range of S. frugiperda, the effect of resistance on flight behavior has not been examined. Long-distance migratory flight capacity of S. frugiperda is of concern given its ongoing global spread and the possibility that migrants may be carrying resistance alleles against pesticides and Bt crops. In this study, we used rotational flight mills to test the effects of generally lethal exposure to Cry1Ac in susceptible and sublethal exposure in Cry1F-resistant S. frugiperda strains. The results detected altered pupal weight after larval feeding on diet containing Cry proteins, which only translated in significantly increased tendency for longer flights in female moths from the susceptible strain. This information has relevant implications when considering current models and assumptions for resistance management of Bt crops.
Collapse
Affiliation(s)
- Caroline P. De Bortoli
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Rafael F. Santos
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Giordano J. Assirati
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Xiaocun Sun
- Research Computing Support, Office of Information Technology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Lucas Hietala
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA; (C.P.D.B.); (R.F.S.); (G.J.A.); (L.H.)
| |
Collapse
|
4
|
Carrière Y, Degain B, Unnithan GC, Tabashnik BE. Inheritance and fitness cost of laboratory-selected resistance to Vip3Aa in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1804-1811. [PMID: 37555261 DOI: 10.1093/jee/toad145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
The polyphagous pest Helicoverpa zea (Lepidoptera: Noctuidae) has evolved practical resistance to transgenic corn and cotton producing Cry1 and Cry2 crystal proteins from Bacillus thuringiensis (Bt) in several regions of the United States. However, the Bt vegetative insecticidal protein Vip3Aa produced by Bt corn and cotton remains effective against this pest. To advance knowledge of resistance to Vip3Aa, we selected a strain of H. zea for resistance to Vip3Aa in the laboratory. After 28 generations of continuous selection, the resistance ratio was 267 for the selected strain (GA-R3) relative to a strain not selected with Vip3Aa (GA). Resistance was autosomal and almost completely recessive at a concentration killing all individuals from GA. Declines in resistance in heterogeneous strains containing a mixture of susceptible and resistant individuals reared in the absence of Vip3Aa indicate a fitness cost was associated with resistance. Previously reported cases of laboratory-selected resistance to Vip3Aa in lepidopteran pests often show partially or completely recessive resistance at high concentrations and fitness costs. Abundant refuges of non-Bt host plants can maximize the benefits of such costs for sustaining the efficacy of Vip3Aa against target pests.
Collapse
Affiliation(s)
- Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Ben Degain
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|