Gebremedhin MB, Xu Z, Kuang C, Nawaz M, Wei N, Cao J, Zhou Y, Zhang H, Zhou J. Involvement of a Microplusin-like Gene (HlonML-1) in the Olfactory Chemosensation of
Haemophysalis longicornis: Expression, RNA Silencing, and Behavioral Implications.
Microorganisms 2024;
12:2269. [PMID:
39597658 PMCID:
PMC11596346 DOI:
10.3390/microorganisms12112269]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The study of tick olfaction is relatively new compared to that of insects, and the molecular mechanisms involved remain poorly understood. Despite several potential chemosensory genes identified in multiple tick species, these are yet to be validated through independent functional experiments. In this research, we cloned and analyzed a microplusin-like gene, HlonML-1, and investigated its role in the chemosensory activities of H. longicornis. The results showed that this gene's amino acid sequences lack histidine residues essential for antimicrobial activity, and it is evolutionarily linked to putative chemosensory microplusins in ticks. Gene expression analyses indicated that HlonML-1 was significantly more abundant in ticks exposed to potential attractants and in the forelegs of H. longicornis than in non-exposed ticks and the hindlegs, respectively. Tick forelegs support the Haller's organ, which is a sensory structure mostly specialized for chemosensation. Furthermore, Y-tube olfactometer assays indicated that silencing HlonML-1 significantly impaired adult ticks' ability to detect selected odors, while their gustatory-related behavior remained unaffected compared to the control groups. Given its unique sequences, relative abundance in chemosensory tissues, and impact on odor detection, HlonML-1 is likely involved in the olfactory chemosensation of H. longicornis. Future research validating putative chemosensory microplusins in the genomes of various tick species may enhance our understanding of their olfactory functions in tick and lead to the identification of new molecular targets for developing tick repellents.
Collapse