1
|
Hellemans S, Hanus R. Termite primary queen - ancestral, but highly specialized eusocial phenotype. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101157. [PMID: 38142979 DOI: 10.1016/j.cois.2023.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Termite eusociality is accompanied by flagrant caste polyphenism manifested by the presence of several sterile (workers and soldiers) and reproductive (imaginal and neotenic kings and queens) caste phenotypes. Imaginal kings and queens are developmentally equivalent to adults of other hemimetabolous insects but display multiple adaptations inherent to their role of eusocial colony founders, such as long lifespan and high fecundity. Herein, we summarize the recent advances in understanding the biology of imaginal (primary) queens as emblematic examples of termite polyphenism acquired during social evolution. We focus on the control of queen development, on dynamics in physiology and fecundity during the queen's life, on new findings about queen fertility signaling, and on proximate mechanisms underlying queen longevity.
Collapse
Affiliation(s)
- Simon Hellemans
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan; Evolutionary Biology and Ecology, Université libre de Bruxelles, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium
| | - Robert Hanus
- Chemistry of Social Insects, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 160 00 Prague, Czech Republic.
| |
Collapse
|
2
|
Alom MS, Cen Y, Tang R, Chen D, Dou H, Mo Z, Du H. Change of termite hindgut metabolome and bacteria after captivity indicates the hindgut microbiota provides nutritional factors to the host. Front Bioeng Biotechnol 2024; 11:1228918. [PMID: 38288244 PMCID: PMC10823432 DOI: 10.3389/fbioe.2023.1228918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
The gut-dwelling microbiota is an indispensable part of termites. It is influenced by a series of factors, such as diet and captivity. The objectives of this study were to study the metabolic functions of hindgut microbiota and to investigate the influence of captivity on the hindgut microbiota. The dampwood termite Hodotermopsis sjostedti was reared in the laboratory for 6 months. We conducted the metabolome analysis of the fat body from the freshly-collected workers (FBF), the hindgut fluid of the freshly-collected workers (HFF), and the hindgut fluid of laboratory-maintained workers. In addition, the 16S rRNA genes from the hindgut bacteria in the freshly-collected and laboratory-maintained workers were sequenced. According to our results, the concentrations of metabolites associated with amino acid biosynthesis, vitamin biosynthesis, fatty acid biosynthesis, and cofactor biosynthesis were higher in HFF compared with those in FBF, suggesting that the hindgut microbiota provides nutritional factors to the host. However, after captivity, the concentrations of metabolites in the hindgut associated with amino acid biosynthesis, nucleotide sugar metabolism, vitamin biosynthesis, and carbon metabolism decreased, while those associated with the steroid hormone biosynthesis and ovarian steroidogenesis increased. Meanwhile, the 16S amplicon study revealed that the abundance of certain bacteria changed after captivity, such as uncultured Termite Group 1 bacterium, Candidatus Symbiothrix dinenymphae, and unclassified Desulfovibrio. Our findings show that captivity influences the hindgut microbiota and shed light on the metabolic potential of the hindgut microbiota.
Collapse
Affiliation(s)
- Most Shormi Alom
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Rui Tang
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dasong Chen
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hongliang Dou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Zhenzuan Mo
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
- College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - He Du
- Guangdong Key Laboratory of Integrated Pest Management in Agriculture, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Chen J, Setia G, Lin LH, Sun Q, Husseneder C. Weight and protozoa number but not bacteria diversity are associated with successful pair formation of dealates in the Formosan subterranean termite, Coptotermes formosanus. PLoS One 2023; 18:e0293813. [PMID: 37956140 PMCID: PMC10642788 DOI: 10.1371/journal.pone.0293813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
New colonies of Formosan subterranean termites are founded by monogamous pairs. During swarming season, alates (winged reproductives) leave their parental colony. After swarming, they drop to the ground, shed their wings, and male and female dealates find suitable nesting sites where they mate and become kings and queens of new colonies. The first generation of offspring is entirely dependent on the nutritional resources of the founder pair consisting of the fat and protein reserves of the dealates and their microbiota, which include the cellulose-digesting protozoa and diverse bacteria. Since termite kings and queens can live for decades, mate for life and colony success is linked to those initial resources, we hypothesized that gut microbiota of founders affect pair formation. To test this hypothesis, we collected pairs found in nest chambers and single male and female dealates from four swarm populations. The association of three factors (pairing status, sex of the dealates and population) with dealate weights, total protozoa, and protozoa Pseudotrichonympha grassii numbers in dealate hindguts was determined. In addition, Illumina 16S rRNA gene sequencing and the QIIME2 pipeline were used to determine the impact of those three factors on gut bacteria diversity of dealates. Here we report that pairing status was significantly affected by weight and total protozoa numbers, but not by P. grassii numbers and bacteria diversity. Weight and total protozoa numbers were higher in paired compared to single dealates. Males contained significantly higher P. grassii numbers and bacteria richness and marginally higher phylogenetic diversity despite having lower weights than females. In conclusion, this study showed that dealates with high body weight and protozoa numbers are more likely to pair and become colony founders, probably because of competitive advantage. The combined nutritional resources provided by body weight and protozoa symbionts of the parents are important for successful colony foundation and development.
Collapse
Affiliation(s)
- Junyan Chen
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Garima Setia
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Li-Hsiang Lin
- Department of Experimental Statistics, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Qian Sun
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| |
Collapse
|
4
|
Tong RL, Patel JS, Gordon JM, Lee SB, Chouvenc T, Su NY. Exuviae Recycling Can Enhance Queen Oviposition and Colony Growth in Subterranean Termites (Blattodea: Rhinotermitidae: Coptotermes). ENVIRONMENTAL ENTOMOLOGY 2023; 52:254-258. [PMID: 36773009 DOI: 10.1093/ee/nvad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Wood-feeding termites have a nitrogen-poor diet and have therefore evolved nitrogen conservation strategies. However, termite workers molt periodically, and throughout the lifetime of a colony, millions of exuviae, a nitrogen-rich resource, are produced by the colony. In Coptotermes Wasmann, workers foraging at remote feeding sites must return to the central part of the nest to molt, where the queen, king, eggs, and larvae are located. It was hypothesized that this molting-site fidelity is an efficient way to recycle nitrogen for reproduction and colony growth, as nestmates involved in exuviae consumption can directly transfer such resources to individuals engaged in reproduction (the queen) or growth (larvae). This study investigates whether incipient colonies of C. gestroi (Wasmann) can gain additional biomass when they are fed supplementary exuviae. Incipient colonies were reared in nitrogen-poor or nitrogen-rich conditions, and 0, 1, 5, or 10 exuviae were added to 3-month-old colonies. After 6.5 months, colonies reared in nitrogen-poor environments gained significantly more biomass when exuviae were added than colonies with no added exuviae. However, the addition of exuviae had no effect on colony growth for colonies reared in nitrogen-rich environments. In a second experiment, queens from colonies in which exuviae were effectively removed laid fewer eggs than queens from colonies in which exuviae were not removed. Therefore, consumption of exuviae from molting individuals by nestmates is an important part of the nitrogen recycling strategy in Coptotermes colonies, as it facilitates queen oviposition and colony growth, especially when such colonies have limited access to nitrogen-rich soils.
Collapse
Affiliation(s)
- Reina L Tong
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| | - Jayshree S Patel
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| | - Johnalyn M Gordon
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| | - Sang-Bin Lee
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| | - Thomas Chouvenc
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| | - Nan-Yao Su
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| |
Collapse
|
5
|
Tong RL, Choi EK, Ugarelli K, Chouvenc T, Su NY. Trophic Path of Marked Exuviae Within Colonies of Coptotermes gestroi (Blattodea: Rhinotermitidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 36916276 PMCID: PMC10011875 DOI: 10.1093/jisesa/iead007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Indexed: 06/18/2023]
Abstract
Nitrogen, a limiting growth factor in wood-feeding insects, was hypothesized to play a role in the recently discovered behavior of subterranean termites returning to the nest to molt. Coptotermes gestroi (Wasmann) exuviae is approximately 11% N by dry weight, and therefore a potentially rich source of recyclable nitrogen. Exuviae from a C. gestroi colony were marked with immunoglobulin G (IgG) and were fed to two-year-old C. gestroi colonies. IgG-marked exuviae were detected with an enzyme-linked immunosorbent assay. The IgG marker was later detected in every caste and life stage except first-instar larvae (L1). The proportion of individuals positive for the marker varied by caste, with the queens always being positive for the marker. The queens and second-or-higher-instar workers (W2+) had significantly higher concentrations of the marker than the eggs and L1. The trophic path of exuviae includes individuals that directly fed on marked exuviae (workers and possibly second-instar larvae) and individuals that secondarily received marked exuviae through trophallaxis (queens, kings, and soldiers). This study described the trophic path of consumed exuviae and demonstrated its role in the recycling of nitrogen in a subterranean termite. Molting at the central nest may be an efficient means to transfer nitrogen from shed exuviae to recipients and may be a nitrogen recycling behavior conserved from a termite ancestor.
Collapse
Affiliation(s)
| | - Eun-Kyung Choi
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, USA
| | - Kelly Ugarelli
- Department of Microbiology and Cell Science, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, USA
| | - Thomas Chouvenc
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, USA
| | - Nan-Yao Su
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, USA
| |
Collapse
|
6
|
Konishi T, Tasaki E, Takata M, Matsuura K. King- and queen-specific degradation of uric acid contributes to reproduction in termites. Proc Biol Sci 2023; 290:20221942. [PMID: 36598016 PMCID: PMC9811635 DOI: 10.1098/rspb.2022.1942] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 01/05/2023] Open
Abstract
Caste-based reproductive division of labour in social insects is built on asymmetries in resource allocation within colonies. Kings and queens dominantly consume limited resources for reproduction, while non-reproductive castes such as workers and soldiers help reproductive castes. Studying the regulation of such asymmetries in resource allocation is crucial for understanding the maintenance of sociality in insects, although the molecular background is poorly understood. We focused on uric acid, which is reserved and used as a valuable nitrogen source in wood-eating termites. We found that king- and queen-specific degradation of uric acid contributes to reproduction in the subterranean termite Reticulitermes speratus. The urate oxidase gene (RsUAOX), which catalyses the first step of nitrogen recycling from stored uric acid, was highly expressed in mature kings and queens, and upregulated with differentiation into neotenic kings/queens. Suppression of uric acid degradation decreased the number of eggs laid per queen. Uric acid was shown to be provided by workers to reproductive castes. Our results suggest that the capacity to use nitrogen, which is essential for the protein synthesis required for reproduction, maintains colony cohesion expressed as the reproductive monopoly held by kings and queens.
Collapse
Affiliation(s)
- Takao Konishi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Mamoru Takata
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Soil organic matter is essential for colony growth in subterranean termites. Sci Rep 2021; 11:21252. [PMID: 34711880 PMCID: PMC8553850 DOI: 10.1038/s41598-021-00674-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
Intrinsic dinitrogen (N2) fixation by diazotrophic bacteria in termite hindguts has been considered an important pathway for nitrogen acquisition in termites. However, studies that supported this claim focused on measuring instant N2 fixation rates and failed to address their relationship with termite colony growth and reproduction over time. We here argue that not all wood-feeding termites rely on symbiotic diazotrophic bacteria for colony growth. The present study looks at dietary nitrogen acquisition in a subterranean termite (Rhinotermitidae, Coptotermes). Young termite colonies reared with wood and nitrogen-rich organic soil developed faster, compared to those reared on wood and inorganic sand. More critically, further colony development was arrested if access to organic soil was removed. In addition, no difference of relative nitrogenase expression rates was found when comparing the hindguts of termites reared between the two conditions. We therefore propose that subterranean termite (Rhinotermitidae) colony growth is no longer restricted to metabolically expensive intrinsic N2 fixation, as the relationship between diazotrophic bacteria and subterranean termites may primarily be trophic rather than symbiotic. Such reliance of Rhinotermitidae on soil microbial decomposition activity for optimal colony growth may also have had a critical mechanistic role in the initial emergence of Termitidae.
Collapse
|
8
|
Tong RL, Aguilera-Olivares D, Chouvenc T, Su NY. Nitrogen content of the exuviae of Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Heliyon 2021; 7:e06697. [PMID: 33912704 PMCID: PMC8065188 DOI: 10.1016/j.heliyon.2021.e06697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/28/2020] [Accepted: 03/31/2021] [Indexed: 10/31/2022] Open
Abstract
Subterranean termites are hemimetabolous social insects where most of the individuals in a colony molt on a regular basis until they die. Nitrogen is a limiting growth factor in wood-feeding insects, such as termites. Because the exuviae of molting termites are consumed by nestmates, it is possible that exuviae represent a potential source of nitrogen that could be recycled and be part of the overall nitrogen conservation strategy of the colony. Although it was documented that cockroach exuviae can contain relatively high levels of nitrogen, the nitrogen content of subterranean termite exuviae has not been examined. This study determines the nitrogen content of Coptotermes gestroi (Wasmann) exuviae collected from four-year-old laboratory colonies using a carbon/nitrogen analyzer. Coptotermes gestroi exuviae contained 11.24 ± 0.64% N (Mean ± SD). The exuviae had a higher proportion of nitrogen than whole bodies of termites (~10.46%), wood (~0.12%), and organic soil (~2.49%). These results support the importance of exuviae consumption by nestmates during the ecdysis process as an aspect of nitrogen conservation strategies in Coptotermes colonies.
Collapse
Affiliation(s)
- Reina L Tong
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| | - Daniel Aguilera-Olivares
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| | - Thomas Chouvenc
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| | - Nan-Yao Su
- Department of Entomology and Nematology, Ft. Lauderdale Research and Education Center, University of Florida, Davie, FL, 33314, USA
| |
Collapse
|
9
|
Chouvenc T, Šobotník J, Engel MS, Bourguignon T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell Mol Life Sci 2021; 78:2749-2769. [PMID: 33388854 PMCID: PMC11071720 DOI: 10.1007/s00018-020-03728-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all "lower" termites rely on cellulolytic protists to digest wood, "higher" termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by "lower" termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of "higher" termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Entomology and Nematology Department, Institute of Food and Agricultural Science, Ft Lauderdale Research and Education Center, University of Florida, Davie, FL, USA.
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Michael S Engel
- Division of Entomology, Natural History Museum, and Department of Ecology and Evolutionary Biology, University of Kansas, 1501 Crestline Drive, Suite 140, Lawrence, KS, 66045, USA
| | - Thomas Bourguignon
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| |
Collapse
|
10
|
Lee SB, Chouvenc T, Su NY. A Reproductives Excluder for Subterranean Termites in Laboratory Experiments. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2882-2887. [PMID: 31346624 DOI: 10.1093/jee/toz211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 06/02/2023]
Abstract
As a social insect, termites have different castes and division of labor in a colony. Investigating the social behavior of subterranean termites is a challenge due to the cryptic nature and large colony size. Planar arenas are commonly used to study these termites under laboratory conditions, and have provided several advantages. However, there is no means to designate areas such as a royal chamber or central nest from foraging sites because reproductives can move freely across arenas. In this study, we examined the minimum passing size of different castes of Coptotermes formosanus Shiraki (Blattodea: Rhinotermitidae), in order to develop a reproductive excluder and correlated minimum passing size with head widths and heights. We found that workers and soldiers of C. formosanus were able to pass through a gap greater than or equal to 0.7 mm. Our results showed that there are significant differences in the head width and height based on castes and head height was more critical than head width to determine passing size. We further confirmed feasibilities of the reproductive excluders using incipient colonies of C. formosanus. Confining reproductives using the excluder in laboratory experiments will provide more chances to study the royal chamber and central nest independently of foraging sites.
Collapse
Affiliation(s)
- Sang-Bin Lee
- Ft. Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, Ft. Lauderdale, FL
| | - Thomas Chouvenc
- Ft. Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, Ft. Lauderdale, FL
| | - Nan-Yao Su
- Ft. Lauderdale Research and Education Center, Department of Entomology and Nematology, University of Florida, Ft. Lauderdale, FL
| |
Collapse
|