1
|
Carneiro de Melo Moura C, Setyaningsih CA, Li K, Merk MS, Schulze S, Raffiudin R, Grass I, Behling H, Tscharntke T, Westphal C, Gailing O. Biomonitoring via DNA metabarcoding and light microscopy of bee pollen in rainforest transformation landscapes of Sumatra. BMC Ecol Evol 2022; 22:51. [PMID: 35473550 PMCID: PMC9040256 DOI: 10.1186/s12862-022-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps, via dual-locus DNA metabarcoding (ITS2 and rbcL) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. RESULTS Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. CONCLUSIONS Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.
Collapse
Affiliation(s)
| | - Christina A Setyaningsih
- Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Kevin Li
- Agroecology, Department of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Miryam Sarah Merk
- Statistics and Econometrics, University of Göttingen, Göttingen, Germany
| | - Sonja Schulze
- Agroecology, Department of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Rika Raffiudin
- Department of Biology, IPB University ID, Bogor, West Java, 16880, Indonesia
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, 70599, Stuttgart, Germany
| | - Hermann Behling
- Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, 37073, Göttingen, Germany
| | - Teja Tscharntke
- Agroecology, Department of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, Department of Crop Sciences, University of Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany. .,Centre of Biodiversity and Sustainable Land Use, University of Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
2
|
Jalil MAA, Damit ASA, Zakaria FZ, Hasan MKC, Isa MLM, Ahmad A. Perceptions on The Therapeutic Effects of Stingless Bee Honey and its Potential Value in Generating Economy among B40 Community of Kampung Bukit Kuin, Kuantan. IOP CONFERENCE SERIES: EARTH AND ENVIRONMENTAL SCIENCE 2022; 1019:012005. [DOI: 10.1088/1755-1315/1019/1/012005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Meliponiculture or keeping stingless bee in Malaysia is expanding and has the potential to generate money for the the bottom 40% of income earners (B40). The increased production of stingless bee honey as a complementary medicine as a therapeutic medium for health for a variety of reasons. Thus, this study aimed to explore the experiences and perceptions on the therapeutic effects of stingless bee honey and its potential value in generating economy among the B40 community. Semi-structured interviews were carried out among the B40 community who participated in the Desa Kelulut project of Kampung Bukit Kuin, Kuantan. The data were analysed using thematic analysis. A total of six respondents interviewed in the study out of 20 participants. Four themes emerged, namely, benefit of stingless bee honey; market supply and economy; sustaining the farm; and facilitate income. The participants valued the beneficial properties of the honey toward health and acknowledged the potential of the stingless bee honey to be marketed in Malaysia as well as generating income for the B40 community of Kampung Bukit Kuin, Kuantan.
Collapse
|
3
|
Oliveira RC, Contrera FAL, Arruda H, Jaffé R, Costa L, Pessin G, Venturieri GC, de Souza P, Imperatriz-Fonseca VL. Foraging and Drifting Patterns of the Highly Eusocial Neotropical Stingless Bee Melipona fasciculata Assessed by Radio-Frequency Identification Tags. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.708178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bees play a key role in ecosystem services as the main pollinators of numerous flowering plants. Studying factors influencing their foraging behavior is relevant not only to understand their biology, but also how populations might respond to changes in their habitat and to the climate. Here, we used radio-frequency identification tags to monitor the foraging behavior of the neotropical stingless bee Melipona fasciculata with special interest in drifting patterns i.e., when a forager drifts into a foreign nest. In addition, we collected meteorological data to study how abiotic factors affect bees’ activity and behavior. Our results show that only 35% of bees never drifted to another hive nearby, and that factors such as temperature, humidity and solar irradiation affected the bees drifting rates and/or foraging activity. Moreover, we tested whether drifting levels would decrease after marking the nest entrances with different patterns. However, contrary to our predictions, there was an increase in the proportion of drifting, which could indicate factors other than orientation mistakes playing a role in this behavior. Overall, our results demonstrate how managed bee populations are affected by both nearby hives and climate factors, offering insights on their biology and potential commercial application as crop pollinators.
Collapse
|
4
|
Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N. Stingless Bee-Collected Pollen (Bee Bread): Chemical and Microbiology Properties and Health Benefits. Molecules 2021; 26:molecules26040957. [PMID: 33670262 PMCID: PMC7917892 DOI: 10.3390/molecules26040957] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/16/2022] Open
Abstract
Stingless bee-collected pollen (bee bread) is a mixture of bee pollen, bee salivary enzymes, and regurgitated honey, fermented by indigenous microbes during storage in the cerumen pot. Current literature data for bee bread is overshadowed by bee pollen, particularly of honeybee Apis. In regions such as South America, Australia, and Southeast Asia, information on stingless bee bee bread is mainly sought to promote the meliponiculture industry for socioeconomic development. This review aims to highlight the physicochemical properties and health benefits of bee bread from the stingless bee. In addition, it describes the current progress on identification of beneficial microbes associated with bee bread and its relation to the bee gut. This review provides the basis for promoting research on stingless bee bee bread, its nutrients, and microbes for application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Salma Malihah Mohammad
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.M.); (N.-K.M.-A.-R.)
| | - Nor-Khaizura Mahmud-Ab-Rashid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.M.); (N.-K.M.-A.-R.)
| | - Norhasnida Zawawi
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.M.M.); (N.-K.M.-A.-R.)
- Natural Medicines and Products Research Laboratory, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
5
|
Rosli FN, Hazemi MHF, Akbar MA, Basir S, Kassim H, Bunawan H. Stingless Bee Honey: Evaluating Its Antibacterial Activity and Bacterial Diversity. INSECTS 2020; 11:insects11080500. [PMID: 32759701 PMCID: PMC7469184 DOI: 10.3390/insects11080500] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
Stingless bee honey (SBH) is an astounding 'miracle liquid' with countless medicinal properties for various diseases such as gastroenteritis, cataracts, as well as for wound-healing. However, knowledge regarding it is still rather scarce. Henceforth, it is intriguing for us to contemplate on the less-studied stingless bee and its honey in particular. First and foremost, the antimicrobial ability of honey from eight different stingless bee species was tested to further proven its health benefit. Homotrigona fimbriata honey showed the highest antimicrobial activity with inhibition against five bacteria; Serratia marcescens, Escherichia coli, Bacillus subtilis, Alcaligenes faecalis and Staphylococcus aureus. The next aim of our study is to characterize their honey bacterial community via the use of 16S rRNA amplicon sequencing technology. A total of eight bacterial phyla, 71 families, 155 genera and 70 species were identified from our study and two of the stingless bee species honey were determined to have the highest bacterial diversity compared to other six stingless bee species, namely Heterotrigona erythrogastra and Tetrigona melanoleuca. Furthermost, Lactobacillus malefermentans was thought to be the native dominant bacteria of SBH due to its predominant presence throughout all studied species. The aforementioned SBH's antimicrobial results and characterization study of its bacterial diversity are hoped to carve the pathway towards extending its probiotic ability into our everyday lives.
Collapse
Affiliation(s)
- Farah Nadiah Rosli
- Centre for Biotechnology and Functional Food, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (F.N.R.); (M.A.A.)
| | - Mohd Hafiz Fikri Hazemi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.H.); (S.B.); (H.K.)
| | - Muhamad Afiq Akbar
- Centre for Biotechnology and Functional Food, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (F.N.R.); (M.A.A.)
| | - Syazwani Basir
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.H.); (S.B.); (H.K.)
| | - Hakimi Kassim
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.H.); (S.B.); (H.K.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.H.); (S.B.); (H.K.)
- Correspondence: ; Tel.: +60-389-214-546
| |
Collapse
|
6
|
Syed Yaacob SN, Wahab RA, Huyop F, Lani MN, Zin NM. Morphological alterations in gram-positive and gram-negative bacteria exposed to minimal inhibitory and bactericidal concentration of raw Malaysian stingless bee honey. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1788421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Fahrul Huyop
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor Bahru, Johor, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Noraziah Mohamad Zin
- Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|