1
|
Stavros S, Panagopoulos P, Machairiotis N, Potiris A, Mavrogianni D, Sfakianakis A, Drakaki E, Christodoulaki C, Panagiotopoulos D, Sioutis D, Karampitsakos T, Antonakopoulos N, Christopoulos P, Drakakis P. Association between cytokine polymorphisms and recurrent pregnancy loss: A review of current evidence. Int J Gynaecol Obstet 2024; 167:45-57. [PMID: 38706379 DOI: 10.1002/ijgo.15575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024]
Abstract
Cytokines are a type of protein that play an important role in the immune response and can also affect many physiological processes in the body. Cytokine polymorphisms refer to genetic variations or mutations that occur within the genes that code for cytokines, which may affect the level of cytokine production and function. Some cytokine polymorphisms have been associated with an increased risk of developing certain diseases, while others may be protective or have no significant effect on health. In recent years, the role of cytokine polymorphisms in the development of recurrent pregnancy loss (RPL) has been studied. RPL or miscarriage is defined as the occurrence of two or more consecutive pregnancy losses before the 20th week of gestation. There are diverse causes leading to RPL, including genetic, anatomical, hormonal, and immunological factors. With regard to cytokine polymorphisms, a few of them have been found to be associated with an increased risk of RPL, for instance, variations in the genes that code for interleukin-6, tumor necrosis factor-alpha, and interleukin-10. The exact mechanisms by which cytokine polymorphisms affect the risk of recurrent miscarriage are still being studied, and further research is essential to fully understand this complex condition. This brief review aims to summarize the recent literature on the association between cytokine polymorphisms and RPL.
Collapse
Affiliation(s)
- Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despoina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysi Christodoulaki
- Department of Obstetrics and Gynecology, Chania General Hospital "St. George", Chania, Greece
| | - Dimitrios Panagiotopoulos
- Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimos Sioutis
- Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Karampitsakos
- Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, University Hospital Aretaieion, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Jang EH, Kim JH, Ryu JY, Lee J, Kim HH, Youn YN. Time-dependent pathobiological and physiological changes of implanted vein grafts in a canine model. J Cardiovasc Transl Res 2022; 15:1108-1118. [PMID: 35244875 DOI: 10.1007/s12265-022-10226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
Although autologous vein grafting is essential, the high vein failure rate and specific clinical interventions are not clear, so a potential treatment is critically needed; thus, complex analyses of the relationship between pathobiological and physiological processes in preclinical are essential. The interposition of the femoral vein was performed in a canine model. Maximized expansion and velocity were measured at 8 weeks post-implantation, and a relative decrease was observed at 12 weeks. However, NI formation and NI/Media ratio significantly increased time dependently, and differences between the mechanical properties were observed. Additionally, RhoA-mediated TNF-α induced by rapid structural changes and high shear stress was confirmed. After adaptation to the arterial environment, vascular remodeling occurred by SMC proliferation and differentiation, apoptosis and autophagy were induced through YAP activity without vasodilation and RhoA activity. Our results show that understanding pathobiological processes in which time-dependent physiological changes contribute to vein failure can lead to a potential strategy. The implanted vein graft within the arterial environment undergoes pathobiological processes through RhoA and YAP activity, leading to pathophysiological changes.
Collapse
Affiliation(s)
- Eui Hwa Jang
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jung-Hwan Kim
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ji-Yeon Ryu
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Jiyong Lee
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
| | - Hyo-Hyun Kim
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 250 Seongsanro, Seodaemun-gu, Seoul, 03722, South Korea.
| |
Collapse
|