1
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
3
|
Ortega M, Molina-García T, Gavara J, de Dios E, Pérez-Solé N, Marcos-Garcés V, Chorro FJ, Rios-Navarro C, Ruiz-Sauri A, Bodi V. Novel Targets Regulating the Role of Endothelial Cells and Angiogenesis after Infarction: A RNA Sequencing Analysis. Int J Mol Sci 2023; 24:15698. [PMID: 37958681 PMCID: PMC10649670 DOI: 10.3390/ijms242115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Endothelial cells (ECs) are a key target for cardioprotection due to their role in preserving cardiac microvasculature and homeostasis after myocardial infarction (MI). Our goal is to identify the genes involved in post-MI EC proliferation, EC apoptosis, and angiogenesis regulation via RNA-sequencing transcriptomic datasets. Using eight studies from the Gene Expression Omnibus, RNA-sequencing data from 92 mice submitted to different times of coronary ischemia or sham were chosen. Functional enrichment analysis was performed based on gene ontology biological processes (BPs). Apoptosis-related BPs are activated up to day 3 after ischemia onset, whereas endothelial proliferation occurs from day 3 onwards, including an overrepresentation of up to 37 genes. Endothelial apoptosis post-MI is triggered via both the extrinsic and intrinsic signaling pathways, as reflected by the overrepresentation of 13 and 2 specific genes, respectively. BPs implicated in new vessel formation are upregulated soon after ischemia onset, whilst the mechanisms aiming at angiogenesis repression can be detected at day 3. Overall, 51 pro-angiogenic and 29 anti-angiogenic factors displayed altered transcriptomic expression post-MI. This is the first study using RNA sequencing datasets to evaluate the genes participating in post-MI endothelium physiology and angiogenesis regulation. These novel data could lay the groundwork to advance understanding of the implication of ECs after MI.
Collapse
Affiliation(s)
- María Ortega
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.O.); (T.M.-G.); (N.P.-S.); (V.M.-G.); (F.J.C.); (V.B.)
| | - Tamara Molina-García
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.O.); (T.M.-G.); (N.P.-S.); (V.M.-G.); (F.J.C.); (V.B.)
| | - Jose Gavara
- Centro de Biomateriales e Ingeniería Tisular, Universidad Politécnica de Valencia, 46010 Valencia, Spain;
| | - Elena de Dios
- Centro de Investigación Biomédica en Red (CIBER)-CV, 28029 Madrid, Spain;
| | - Nerea Pérez-Solé
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.O.); (T.M.-G.); (N.P.-S.); (V.M.-G.); (F.J.C.); (V.B.)
| | - Victor Marcos-Garcés
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.O.); (T.M.-G.); (N.P.-S.); (V.M.-G.); (F.J.C.); (V.B.)
- Cardiology Department, Hospital Clínico Universitario, 46010 Valencia, Spain
| | - Francisco J. Chorro
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.O.); (T.M.-G.); (N.P.-S.); (V.M.-G.); (F.J.C.); (V.B.)
- Centro de Investigación Biomédica en Red (CIBER)-CV, 28029 Madrid, Spain;
- Cardiology Department, Hospital Clínico Universitario, 46010 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Cesar Rios-Navarro
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.O.); (T.M.-G.); (N.P.-S.); (V.M.-G.); (F.J.C.); (V.B.)
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| | - Amparo Ruiz-Sauri
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.O.); (T.M.-G.); (N.P.-S.); (V.M.-G.); (F.J.C.); (V.B.)
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| | - Vicente Bodi
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (M.O.); (T.M.-G.); (N.P.-S.); (V.M.-G.); (F.J.C.); (V.B.)
- Centro de Investigación Biomédica en Red (CIBER)-CV, 28029 Madrid, Spain;
- Cardiology Department, Hospital Clínico Universitario, 46010 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|