1
|
Tan SH, Liu S, Teoh SH, Bonnard C, Leavesley D, Liang K. A sustainable strategy for generating highly stable human skin equivalents based on fish collagen. BIOMATERIALS ADVANCES 2024; 158:213780. [PMID: 38280287 DOI: 10.1016/j.bioadv.2024.213780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Tissue engineered skin equivalents are increasingly recognized as potential alternatives to traditional skin models such as human ex vivo skin or animal skin models. However, most of the currently investigated human skin equivalents (HSEs) are constructed using mammalian collagen which can be expensive and difficult to extract. Fish skin is a waste product produced by fish processing industries and identified as a cost-efficient and sustainable source of type I collagen. In this work, we describe a method for generating highly stable HSEs based on fibrin fortified tilapia fish collagen. The fortified fish collagen (FFC) formulation is optimized to enable reproducible fabrication of full-thickness HSEs that undergo limited contraction, facilitating the incorporation of human donor-derived skin cells and formation of biomimetic dermal and epidermal layers. The morphology and barrier function of the FFC HSEs are compared with a commercial skin model and validated with immunohistochemical staining and transepithelial electrical resistance testing. Finally, the potential of a high throughput screening platform with FFC HSE is explored by scaling down its fabrication to 96-well format.
Collapse
Affiliation(s)
- Shi Hua Tan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Swee Hin Teoh
- College of Materials Science and Engineering, Hunan University, People's Republic of China
| | - Carine Bonnard
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore
| | | | - Kun Liang
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore; Skin Research Institute of Singapore (SRIS), Singapore.
| |
Collapse
|
2
|
Quiñones-Vico MI, Fernández-González A, Ubago-Rodríguez A, Moll K, Norrby-Teglund A, Svensson M, Gutiérrez-Fernández J, Torres JM, Arias-Santiago S. Antibiotics against Pseudomonas aeruginosa on Human Skin Cell Lines: Determination of the Highest Non-Cytotoxic Concentrations with Antibiofilm Capacity for Wound Healing Strategies. Pharmaceutics 2024; 16:117. [PMID: 38258128 PMCID: PMC10818945 DOI: 10.3390/pharmaceutics16010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most common microorganisms causing infections of severe skin wounds. Antibiotic or antiseptic treatments are crucial to prevent and curb these infections. Antiseptics have been reported to be cytotoxic to skin cells and few studies evaluate the impact of commonly used antibiotics. This study evaluates how clinical antibiotics affect skin cells' viability, proliferation, migration, and cytokine secretion and defines the highest non-cytotoxic concentrations that maintain antibacterial activity. Cell proliferation, viability, and migration were evaluated on cell monolayers. Cytokines related to the wound healing process were determined. The minimum inhibitory concentrations and the impact on bacterial biofilm were assessed. Results showed that 0.02 mg/mL ciprofloxacin and 1 mg/mL meropenem are the highest non-cytotoxic concentrations for fibroblasts and keratinocytes while 1.25 mg/mL amikacin and 0.034 mg/mL colistin do not affect fibroblasts' viability and cytokine secretion but have an impact on keratinocytes. These concentrations are above the minimum inhibitory concentration but only amikacin could eradicate the biofilm. For the other antibiotics, cytotoxic concentrations are needed to eradicate the biofilm. Combinations with colistin at non-cytotoxic concentrations effectively eliminate the biofilm. These results provide information about the concentrations required when administering topical antibiotic treatments on skin lesions, and how these antibiotics affect wound management therapies. This study set the basis for the development of novel antibacterial wound healing strategies such as antibiotic artificial skin substitutes.
Collapse
Affiliation(s)
- María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain
- Biochemistry, Molecular Biology III and Immunology Department, University of Granada, 18071 Granada, Spain;
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | | | - Jesús M. Torres
- Biochemistry, Molecular Biology III and Immunology Department, University of Granada, 18071 Granada, Spain;
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
3
|
Fraczek W, Kregielewski K, Wierzbicki M, Krzeminski P, Zawadzka K, Szczepaniak J, Grodzik M. A Comprehensive Assessment of the Biocompatibility and Safety of Diamond Nanoparticles on Reconstructed Human Epidermis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5600. [PMID: 37629892 PMCID: PMC10456456 DOI: 10.3390/ma16165600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Diamond nanoparticles, also known as nanodiamonds (NDs), exhibit remarkable, awe-inspiring properties that make them suitable for various applications in the field of skin care products. However, a comprehensive assessment of their compatibility with human skin, according to the irritation criteria established by the Organization for Economic Cooperation and Development (OECD), has not yet been conducted. The purpose of this study was to evaluate if diamond nanoparticles at a concentration of 25 μg/mL, incubated with reconstituted human epidermis (EpiDermTM) for 18 h, conform to the OECD TG439 standard used to classify chemical irritants. For this purpose, a cell viability test (MTT assay), histological assessment, and analysis of pro-inflammatory cytokine expression were performed. The results indicated that NDs had no toxic effect at the tested concentration. They also did not adversely affect tissue structure and did not lead to a simultaneous increase in protein and mRNA expression of the analyzed cytokines. These results confirm the safety and biocompatibility of NDs for application in skincare products, thereby creating a wide range of possibilities to exert an impact on the advancement of contemporary cosmetology in the future.
Collapse
Affiliation(s)
- Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Kacper Kregielewski
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Jaroslaw Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| |
Collapse
|
4
|
Rippon M, Rogers AA, Westgate S, Ousey K. Effectiveness of a polyhexamethylene biguanide-containing wound cleansing solution using experimental biofilm models. J Wound Care 2023; 32:359-367. [PMID: 37300862 DOI: 10.12968/jowc.2023.32.6.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Antiseptics are widely used in wound management to prevent or treat wound infections, and have been shown to have antibiofilm efficacy. The objective of this study was to assess the effectiveness of a polyhexamethylene biguanide (PHMB)-containing wound cleansing and irrigation solution on model biofilm of pathogens known to cause wound infections compared with a number of other antimicrobial wound cleansing and irrigation solutions. METHOD Staphylococcus aureus and Pseudomonas aeruginosa single-species biofilms were cultured using microtitre plate and Centers for Disease Control and Prevention (CDC) biofilm reactor methods. Following a 24-hour incubation period, the biofilms were rinsed to remove planktonic microorganisms and then challenged with wound cleansing and irrigation solutions. Following incubation of the biofilms with a variety of concentrations of the test solutions (50%, 75% or 100%) for 20, 30, 40, 50 or 60 minutes, remaining viable organisms from the treated biofilms were quantified. RESULTS The six antimicrobial wound cleansing and irrigation solutions used were all effective in eradicating Staphylococcus aureus biofilm bacteria in both test models. However, the results were more variable for the more tolerant Pseudomonas aeruginosa biofilm. Only one of the six solutions (sea salt and oxychlorite/NaOCl-containing solution) was able to eradicate Pseudomonas aeruginosa biofilm using the microtitre plate assay. Of the six solutions, three (a solution containing PHMB and poloxamer 188 surfactant, a solution containing hypochlorous acid (HOCl) and a solution containing NaOCl/HOCl) showed increasing levels of eradication of Pseudomonas aeruginosa biofilm microorganisms with increasing concentration and exposure time. Using the CDC biofilm reactor model, all six cleansing and irrigation solutions, except for the solution containing HOCl, were able to eradicate Pseudomonas aeruginosa biofilms such that no viable microorganisms were recovered. CONCLUSION This study demonstrated that a PHMB-containing wound cleansing and irrigation solution was as effective as other antimicrobial wound irrigation solutions for antibiofilm efficacy. Together with the low toxicity, good safety profile and absence of any reported acquisition of bacterial resistance to PHMB, the antibiofilm effectiveness data support the alignment of this cleansing and irrigation solution with antimicrobial stewardship (AMS) strategies.
Collapse
Affiliation(s)
- Mark Rippon
- Visiting Clinical Research Associate, Huddersfield University, Huddersfield, UK
- Medical Marketing Consultant, Daneriver Consultancy Ltd, Holmes Chapel, Cheshire, UK
| | - Alan A Rogers
- Independent Wound Care Consultant, Flintshire, North Wales, UK
| | | | - Karen Ousey
- Professor of Skin Integrity, Director for the Institute of Skin Integrity and Infection Prevention, University of Huddersfield Department of Nursing and Midwifery, Huddersfield, UK
- Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia
- Visiting Professor, RCSI, Dublin, Ireland
- Chair IWII
- President Elect ISTAP
| |
Collapse
|
5
|
Kiwanuka H, Wang AT, Orgill DP. Advances in Translational Regenerative Therapies. J Clin Med 2023; 12:jcm12082838. [PMID: 37109176 PMCID: PMC10141463 DOI: 10.3390/jcm12082838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Regenerative medicine aims to replace damaged cells and tissues following injury [...].
Collapse
Affiliation(s)
- Harriet Kiwanuka
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Dennis P Orgill
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
How SW, Low DYS, Leo BF, Manickam S, Goh BH, Tang SY. A Critical Review on the Current State of Antimicrobial Glove Technologies: Advances, Challenges, and Future Prospects. J Hosp Infect 2023:S0195-6701(23)00111-1. [PMID: 37044283 DOI: 10.1016/j.jhin.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Following recent viral outbreaks, there has been a significant increase in global demand for gloves. Biomedical research increasingly focuses on antimicrobial gloves to combat microbial transmission and hospital-acquired infections. Most antimicrobial gloves are manufactured using antimicrobial chemicals such as disinfectants, biocides, and sanitizers. The design of antimicrobial gloves incorporates advanced technologies, including colloidal particles and nanomaterials, to enhance antimicrobial effectiveness. A category of antimicrobial gloves also explores and integrates natural antimicrobial benefits from animals, plants, and microorganisms. Many types of antimicrobial agents are available; however, it is crucial that the selected agent exhibits a broad spectrum of activity and is not susceptible to promoting resistance. Additionally, future research should focus on the potential effect of antimicrobial gloves on the skin microbiota and irritation during extended wear. Careful integration of the antimicrobial agent is essential to ensure optimal effectiveness without compromising the mechanical properties of the gloves.
Collapse
Affiliation(s)
- Sher Wei How
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Darren Yi Sern Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Fen Leo
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang Province, China.
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Kakuda L, Berardo Gonçalves Maia Campos PM, Bordini Zanin R, Noronha Favaro L. Development of multifunctional sunscreens: Evaluation of physico-mechanical and film-forming properties. Int J Pharm 2023; 635:122705. [PMID: 36791997 DOI: 10.1016/j.ijpharm.2023.122705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023]
Abstract
The exposome consists of several factors such as solar radiation and pollution, which can provoke skin damage and lead to premature skin aging. Thus, the use of multifunctional sunscreens is critical in order to prevent this damage. In addition, film formation is very important to reach the expected SPF. Within this context, the objective of the present study was to develop and evaluate the in vivo SPF, sensory, physico-mechanical, and film-forming properties of sunscreens containing a biopolymer from Tara and red algae. A clinical study of the film-forming effect and of skin hydration was performed by instrumental measurements and by biophysical and skin imaging techniques. The SPF of both formulations, with or without the biopolymer, was 45.6. This result was 10.09% higher than expected. higher than expected. However, the sunscreen added to the biopolymer showed better sensory and texture properties, significantly increased skin hydration and reduced transepidermal water loss. The film-forming property was observed by the analysis of Reflectance Confocal Microscopy images 2, 4, and 6 h after formulation application, and this result was more pronounced for the sunscreen added to the biopolymer. Thus, the film-forming property of the biopolymer was important for prolonging the skin barrier function due to film formation and to obtain more effective and multifunctional sunscreens that provide longer protection.
Collapse
Affiliation(s)
- Letícia Kakuda
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Rafaela Bordini Zanin
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Laura Noronha Favaro
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
García-Valdivia M, Quiñones-Vico MI, Ortega-Llamas L, Fernández-González A, Ubago-Rodríguez A, Sanabria-de la Torre R, Arias-Santiago S. Cytotoxicity, Epidermal Barrier Function and Cytokine Evaluation after Antiseptic Treatment in Bioengineered Autologous Skin Substitute. Biomedicines 2022; 10:biomedicines10061453. [PMID: 35740473 PMCID: PMC9220084 DOI: 10.3390/biomedicines10061453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Bioengineered autologous skin substitutes (BASS) technology is an emerging field for skin burn therapy. However, further studies on BASS characterization, viability against standard procedures for wound healing, and protocol optimization are necessary for the improvement of BASS technology for clinical use. The aim of this study is to evaluate the effect of common antiseptics for clinical use in BASS, focusing on cell viability, inflammatory cytokine pattern, and epithelium and skin barrier integrity, in order to establish the most adequate treatment for wound care after BASS grafting. Human keratinocytes (hKT) and dermal fibroblasts (hDF) were isolated from foreskin samples and integrated into hyaluronic acid-based BASS. The following antiseptics were applied every 48 h: ethanol (70%), chlorhexidine digluconate (1%), sodium hypochlorite (0.02%), povidone iodine (100 mg/mL), and polyhexanide (0.1%), during a follow-up of 16 days. Sodium hypochlorite was the only treatment that showed a high cell viability percentage throughout the evaluation time compared to other antiseptic treatments, as well as a similar cytokine secretion pattern as control BASS. No significant differences were found regarding epidermal barrier function. These findings point towards sodium hypochlorite being the least aggressive antiseptic treatment for BASS post-transplantation wound care.
Collapse
Affiliation(s)
- Marta García-Valdivia
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18014 Granada, Spain
| | - Laura Ortega-Llamas
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Correspondence:
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18014 Granada, Spain
| | - Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18014 Granada, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
9
|
Cytotoxicity and Wound Closure Evaluation in Skin Cell Lines after Treatment with Common Antiseptics for Clinical Use. Cells 2022; 11:cells11091395. [PMID: 35563705 PMCID: PMC9099882 DOI: 10.3390/cells11091395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, new therapies, such as skin cell lines injections, have emerged to promote re-epithelialization of damaged areas such as chronic ulcers or to treat patients with severe burns. Antiseptics are commonly used during wound clinical management to avoid serious infections, but they may delay the healing process due to their apparent cytotoxicity to skin cells. The cytotoxicity of ethanol, chlorhexidine digluconate, sodium hypochlorite, povidone iodine and polyhexanide was evaluated in this in vitro study on human fibroblasts and keratinocytes. Treatments were applied to each cell type culture every 48 h for 14 days. To determine the cytotoxic of antiseptics, cell viability (Live/Dead®) and cell proliferation (AlamarBlue™) assays were performed on cell monolayers. Cell migration capacity was evaluated with a wound closure assay. Results showed how chlorhexidine digluconate and ethanol significantly reduced the viability of keratinocytes and inhibited cell migration. Povidone iodine followed by chlorhexidine digluconate significantly reduced fibroblast cell viability. Povidone iodine also inhibited cell migration. Sodium hypochlorite was the least detrimental to both cell types. If epithelial integrity is affected, the wound healing process may be altered, so the information gathered in this study may be useful in selecting the least aggressive antiseptic after treatment with new emerging therapies.
Collapse
|
10
|
Brown JL, Townsend E, Short RD, Williams C, Woodall C, Nile CJ, Ramage G. Assessing the inflammatory response to in vitro polymicrobial wound biofilms in a skin epidermis model. NPJ Biofilms Microbiomes 2022; 8:19. [PMID: 35393409 PMCID: PMC8991182 DOI: 10.1038/s41522-022-00286-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/24/2022] [Indexed: 01/13/2023] Open
Abstract
Wounds can commonly become infected with polymicrobial biofilms containing bacterial and fungal microorganisms. Microbial colonization of the wound can interfere with sufficient healing and repair, leading to high rates of chronicity in certain individuals, which can have a huge socioeconomic burden worldwide. One route for alleviating biofilm formation in chronic wounds is sufficient treatment of the infected area with topical wound washes and ointments. Thus, the primary aim here was to create a complex in vitro biofilm model containing a range of microorganisms commonly isolated from the infected wound milieu. These polymicrobial biofilms were treated with three conventional anti-biofilm wound washes, chlorhexidine (CHX), povidone-iodine (PVP-I), and hydrogen peroxide (H2O2), and efficacy against the microorganisms assessed using live/dead qPCR. All treatments reduced the viability of the biofilms, although H2O2 was found to be the most effective treatment modality. These biofilms were then co-cultured with 3D skin epidermis to assess the inflammatory profile within the tissue. A detailed transcriptional and proteomic profile of the epidermis was gathered following biofilm stimulation. At the transcriptional level, all treatments reduced the expression of inflammatory markers back to baseline (untreated tissue controls). Olink technology revealed a unique proteomic response in the tissue following stimulation with untreated and CHX-treated biofilms. This highlights treatment choice for clinicians could be dictated by how the tissue responds to such biofilm treatment, and not merely how effective the treatment is in killing the biofilm.
Collapse
Affiliation(s)
- Jason L Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK. .,Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| | - Eleanor Townsend
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.,School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK
| | - Robert D Short
- Department of Chemistry and Material Science Institute, University of Lancaster, Lancaster, LA1 4YB, UK
| | - Craig Williams
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.,Microbiology Department, Lancaster Royal Infirmary, University of Lancaster, Lancaster, LA1 4YW, UK
| | - Chris Woodall
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.,Blutest Laboratories, 5 Robroyston Oval, Nova Business Park, Glasgow, G33 1AP, UK
| | - Christopher J Nile
- Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.,School of Dental Sciences, Newcastle University, Newcastle, NE2 4BW, UK
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK. .,Glasgow Biofilm Research Network, 378 Sauchiehall Street, Glasgow, G2 3JZ, UK.
| |
Collapse
|