1
|
Zobeiri A, Rezaee A, Hajati F, Argha A, Alinejad-Rokny H. Post-Cardiac arrest outcome prediction using machine learning: A systematic review and meta-analysis. Int J Med Inform 2025; 193:105659. [PMID: 39481177 DOI: 10.1016/j.ijmedinf.2024.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Early and reliable prognostication in post-cardiac arrest patients remains challenging, with various factors linked to return of spontaneous circulation (ROSC), survival, and neurological results. Machine learning and deep learning models show promise in improving these predictions. This systematic review and meta-analysis evaluates how effective these approaches are in predicting clinical outcomes at different time points using structured data. METHODS This study followed PRISMA guidelines, involving a comprehensive search across PubMed, Scopus, and Web of Science databases until March 2024. Studies aimed at predicting ROSC, survival (or mortality), and neurological outcomes after cardiac arrest through the application of machine learning or deep learning techniques with structured data were included. Data extraction followed the guidelines of the CHARMS checklist, and the bias risk was evaluated using PROBAST tool. Models reporting the AUC metric with 95 % confidence intervals were incorporated into the quantitative synthesis and meta-analysis. RESULTS After extracting 2,753 initial records, 41 studies met the inclusion criteria, yielding 97 machine learning and 16 deep learning models. The pooled AUC for predicting favorable neurological outcomes (CPC 1 or 2) at hospital discharge was 0.871 (95 % CI: 0.813 - 0.928) for machine learning models and 0.877 (95 % CI: 0.831-0.924) across deep learning algorithms. For survival prediction, this value was found to be 0.837 (95 % CI: 0.757-0.916). Considerable heterogeneity and high risk of bias were observed, mainly attributable to inadequate management of missing data and the absence of calibration plots. Most studies focused on pre-hospital factors, with age, sex, and initial arrest rhythm being the most frequent features. CONCLUSION Predictive models utilizing AI-based approaches, including machine and deep learning models exhibit enhanced effectiveness compared to previous regression algorithms, but significant heterogeneity and high risk of bias limit their dependability. Evaluating state-of-the-art deep learning models tailored for tabular data and their clinical generalizability can enhance outcome prediction after cardiac arrest.
Collapse
Affiliation(s)
- Amirhosein Zobeiri
- Department of Mechatronics, School of Intelligent Systems, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Alireza Rezaee
- Department of Mechatronics, School of Intelligent Systems, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Farshid Hajati
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2350, Australia.
| | - Ahmadreza Argha
- School of Biomedical Engineering, UNSW Sydney, Randwick, NSW 2052, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, School of Biomedical Engineering, UNSW Sydney, Randwick, NSW 2052, Australia
| |
Collapse
|
2
|
Rawshani A, Hessulf F, Deminger J, Sultanian P, Gupta V, Lundgren P, Mohammed M, Abu Alchay M, Siöland T, Gryska E, Piasecki A. Prediction of neurologic outcome after out-of-hospital cardiac arrest: An interpretable approach with machine learning. Resuscitation 2024; 202:110359. [PMID: 39142467 DOI: 10.1016/j.resuscitation.2024.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Out-of-hospital cardiac arrest (OHCA) is a critical condition with low survival rates. In patients with a return of spontaneous circulation, brain injury is a leading cause of death. In this study, we propose an interpretable machine learning approach for predicting neurologic outcome after OHCA, using information available at the time of hospital admission. METHODS The study population were 55 615 OHCA cases registered in the Swedish Cardiopulmonary Resuscitation Registry between 2010 and 2020. The dataset was split to training and validation sets (for model development) and test set (for evaluation of the final model). We used an XGBoost algorithm with stratified, repeated 10-fold cross-validation along with Optuna framework for hyperparameters tuning. The final model was trained on 10 features selected based on the importance scores and evaluated on the test set in terms of discrimination, calibration and bias-variance tradeoff. We used SHapley Additive exPlanations to address the 'black-box' model and align with eXplainable artificial intelligence. RESULTS The final model achieved: area under the receiver operating characteristic value 0.964 (95% confidence interval (CI) [0.960-0.968]), sensitivity 0.606 (95% CI [0.573-0.634]), specificity 0.975 (95% CI [0.972-0.978]), positive predictive value (PPV) 0.664 (95% CI [0.625-0.696]), negative predictive value (NPV) 0.969 (95% CI [0.966-0.972]), macro F1 0.803 (95% CI [0.788-0.816]), and showed a very good calibration. SHAP features with the highest impact on the model's output were:'ROSC on arrival to hospital', 'Initial rhythm asystole' and 'Conscious on arrival to hospital'. CONCLUSIONS The XGBoost machine learning model with 10 features available at the time of hospital admission showed good performance for predicting neurologic outcome after OHCA, with no apparent signs of overfitting.
Collapse
Affiliation(s)
- Araz Rawshani
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Wallenberg Laboratory, Blå stråket 5, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Gothenburg, Sweden; The Swedish Registry for Cardiopulmonary Resuscitation, Medicinaregatan 18G, 413 90 Gothenburg, Sweden
| | - Fredrik Hessulf
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Blå stråket 5, 413 45 Gothenburg, Sweden; Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Göteborgsvägen 31, 431 30 Mölndal, Sweden
| | - John Deminger
- Department of Medicine and Emergency Care, Sahlgrenska University Hospital, Göteborgsvägen 33, 431 30 Mölndal, Sweden
| | - Pedram Sultanian
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Wallenberg Laboratory, Blå stråket 5, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Vibha Gupta
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Wallenberg Laboratory, Blå stråket 5, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | - Peter Lundgren
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Wallenberg Laboratory, Blå stråket 5, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Gothenburg, Sweden
| | - Mohammed Mohammed
- Department of Cardiology, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Gothenburg, Sweden
| | - Monér Abu Alchay
- Department of Cardiology, Sahlgrenska University Hospital, Blå stråket 5, 413 45 Gothenburg, Sweden
| | - Tobias Siöland
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Blå stråket 5, 413 45 Gothenburg, Sweden; Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Göteborgsvägen 31, 431 30 Mölndal, Sweden
| | - Emilia Gryska
- Department of Hand Surgery, Sahlgrenska University Hospital, Göteborgsvägen 31, 431 30 Mölndal, Sweden; Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Adam Piasecki
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Blå stråket 5, 413 45 Gothenburg, Sweden; Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Göteborgsvägen 31, 431 30 Mölndal, Sweden.
| |
Collapse
|
3
|
Vitt JR, Mainali S. Artificial Intelligence and Machine Learning Applications in Critically Ill Brain Injured Patients. Semin Neurol 2024; 44:342-356. [PMID: 38569520 DOI: 10.1055/s-0044-1785504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The utilization of Artificial Intelligence (AI) and Machine Learning (ML) is paving the way for significant strides in patient diagnosis, treatment, and prognostication in neurocritical care. These technologies offer the potential to unravel complex patterns within vast datasets ranging from vast clinical data and EEG (electroencephalogram) readings to advanced cerebral imaging facilitating a more nuanced understanding of patient conditions. Despite their promise, the implementation of AI and ML faces substantial hurdles. Historical biases within training data, the challenge of interpreting multifaceted data streams, and the "black box" nature of ML algorithms present barriers to widespread clinical adoption. Moreover, ethical considerations around data privacy and the need for transparent, explainable models remain paramount to ensure trust and efficacy in clinical decision-making.This article reflects on the emergence of AI and ML as integral tools in neurocritical care, discussing their roles from the perspective of both their scientific promise and the associated challenges. We underscore the importance of extensive validation in diverse clinical settings to ensure the generalizability of ML models, particularly considering their potential to inform critical medical decisions such as withdrawal of life-sustaining therapies. Advancement in computational capabilities is essential for implementing ML in clinical settings, allowing for real-time analysis and decision support at the point of care. As AI and ML are poised to become commonplace in clinical practice, it is incumbent upon health care professionals to understand and oversee these technologies, ensuring they adhere to the highest safety standards and contribute to the realization of personalized medicine. This engagement will be pivotal in integrating AI and ML into patient care, optimizing outcomes in neurocritical care through informed and data-driven decision-making.
Collapse
Affiliation(s)
- Jeffrey R Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, California
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
4
|
Toy J, Bosson N, Schlesinger S, Gausche-Hill M, Stratton S. Artificial intelligence to support out-of-hospital cardiac arrest care: A scoping review. Resusc Plus 2023; 16:100491. [PMID: 37965243 PMCID: PMC10641545 DOI: 10.1016/j.resplu.2023.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Background Artificial intelligence (AI) has demonstrated significant potential in supporting emergency medical services personnel during out-of-hospital cardiac arrest (OHCA) care; however, the extent of research evaluating this topic is unknown. This scoping review examines the breadth of literature on the application of AI in early OHCA care. Methods We conducted a search of PubMed®, Embase, and Web of Science in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews guidelines. Articles focused on non-traumatic OHCA and published prior to January 18th, 2023 were included. Studies were excluded if they did not use an AI intervention (including machine learning, deep learning, or natural language processing), or did not utilize data from the prehospital phase of care. Results Of 173 unique articles identified, 54 (31%) were included after screening. Of these studies, 15 (28%) were from the year 2022 and with an increasing trend annually starting in 2019. The majority were carried out by multinational collaborations (20/54, 38%) with additional studies from the United States (10/54, 19%), Korea (5/54, 10%), and Spain (3/54, 6%). Studies were classified into three major categories including ECG waveform classification and outcome prediction (24/54, 44%), early dispatch-level detection and outcome prediction (7/54, 13%), return of spontaneous circulation and survival outcome prediction (15/54, 20%), and other (9/54, 16%). All but one study had a retrospective design. Conclusions A small but growing body of literature exists describing the use of AI to augment early OHCA care.
Collapse
Affiliation(s)
- Jake Toy
- University of California Los Angeles, Fielding School of Public Health, 650 Charles E Young Drive South, Los Angeles, CA 90095, USA
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Nichole Bosson
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Shira Schlesinger
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Marianne Gausche-Hill
- Harbor-UCLA Department of Emergency Medicine & The Lundquist Research Institute, 1000 W Carson Street, Torrance, CA 90502, USA
- Los Angeles County EMS Agency, 10100 Pioneer Blvd, Santa Fe Springs, CA 90670, USA
- David Geffen School of Medicine at UCLA, Department of Emergency Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Samuel Stratton
- University of California Los Angeles, Fielding School of Public Health, 650 Charles E Young Drive South, Los Angeles, CA 90095, USA
- Orange County California Emergency Medical Services Agency, 405 W. 5th Street, Santa Ana, CA 92705, USA
| |
Collapse
|
5
|
Shinada K, Matsuoka A, Koami H, Sakamoto Y. Bayesian network predicted variables for good neurological outcomes in patients with out-of-hospital cardiac arrest. PLoS One 2023; 18:e0291258. [PMID: 37768915 PMCID: PMC10538776 DOI: 10.1371/journal.pone.0291258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
Out-of-hospital cardiac arrest (OHCA) is linked to a poor prognosis and remains a public health concern. Several studies have predicted good neurological outcomes of OHCA. In this study, we used the Bayesian network to identify variables closely associated with good neurological survival outcomes in patients with OHCA. This was a retrospective observational study using the Japan Association for Acute Medicine OHCA registry. Fifteen explanatory variables were used, and the outcome was one-month survival with Glasgow-Pittsburgh cerebral performance category (CPC) 1-2. The 2014-2018 dataset was used as training data. The variables selected were identified and a sensitivity analysis was performed. The 2019 dataset was used for the validation analysis. Four variables were identified, including the motor response component of the Glasgow Coma Scale (GCS M), initial rhythm, age, and absence of epinephrine. Estimated probabilities were increased in the following order: GCS M score: 2-6; epinephrine: non-administered; initial rhythm: spontaneous rhythm and shockable; and age: <58 and 59-70 years. The validation showed a sensitivity of 75.4% and a specificity of 95.4%. We identified GCS M score of 2-6, initial rhythm (spontaneous rhythm and shockable), younger age, and absence of epinephrine as variables associated with one-month survival with CPC 1-2. These variables may help clinicians in the decision-making process while treating patients with OHCA.
Collapse
Affiliation(s)
- Kota Shinada
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Saga University, Saga City, Saga Prefecture, Japan
| | - Ayaka Matsuoka
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Saga University, Saga City, Saga Prefecture, Japan
| | - Hiroyuki Koami
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Saga University, Saga City, Saga Prefecture, Japan
| | - Yuichiro Sakamoto
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Saga University, Saga City, Saga Prefecture, Japan
| |
Collapse
|
6
|
Harris M, Crowe RP, Anders J, D'Acunto S, Adelgais KM, Fishe JN. Identification of factors associated with return of spontaneous circulation after pediatric out-of-hospital cardiac arrest using natural language processing. PREHOSP EMERG CARE 2022:1-8. [PMID: 35510881 DOI: 10.1080/10903127.2022.2074180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Introduction: Prior studies examining prehospital characteristics related to return of spontaneous circulation (ROSC) in pediatric out-of-hospital cardiac arrest (OHCA) are limited to structured data. Natural language processing (NLP) could identify new factors from unstructured data using free-text narratives. The purpose of this study was to use NLP to examine EMS clinician free-text narratives for characteristics associated with prehospital ROSC in pediatric OHCA.Methods: This was a retrospective analysis of patients ages 0-17 with OHCA in 2019 from the ESO Data Collaborative. We performed an exploratory analysis of EMS narratives using NLP with an a priori token library. We then constructed biostatistical and machine learning models and compared their performance in predicting ROSC.Results: There were 1,726 included EMS encounters for pediatric OHCA; 60% were male patients, and the median age was 1 year (IQR 0-9). Most cardiac arrest events (61.3%) were unwitnessed, 87.3% were identified as having medical causes, and 5.9% had initial shockable rhythms. Prehospital ROSC was achieved in 23.1%. Words most positively correlated with ROSC were "ROSC" (r = 0.42), "pulse" (r = 0.29), "drowning" (r = 0.13), and "PEA" (r = 0.12). Words negatively correlated with ROSC included "asystole" (r = -0.25), "lividity" (r = -0.14), and "cold" (r = -0.14). The terms 'asystole,' 'pulse', 'no breathing', 'PEA', and 'dry' had the greatest difference in frequency of appearance between encounters with and without ROSC (p < 0.05). The best-performing model for predicting prehospital ROSC was logistic regression with random oversampling using free-text data only (area under the receiver operating characteristic curve 0.92).Conclusions: EMS clinician free-text narratives reveal additional characteristics associated with prehospital ROSC in pediatric OHCA. Incorporating those terms into machine learning models of prehospital ROSC improves predictive ability. Therefore, NLP holds promise as a tool for use in predictive models with the goal to increase evidence-based management of pediatric OHCA.
Collapse
Affiliation(s)
- Matthew Harris
- Northwell Hofstra School of Medicine, Departments of Pediatrics and Emergency Medicine, New Hyde Park, NY
| | | | - Jennifer Anders
- Johns Hopkins School of Medicine, Department of Pediatrics, Baltimore, MD
| | - Salvatore D'Acunto
- University of Florida College of Medicine - Jacksonville, Center for Data Solutions, Jacksonville, FL
| | - Kathlen M Adelgais
- University of Colorado School of Medicine, Department of Pediatrics, Section of Pediatric Emergency Medicine, Aurora, CO
| | - Jennifer N Fishe
- University of Florida College of Medicine - Jacksonville, Center for Data Solutions, Jacksonville, FL.,University of Florida College of Medicine - Jacksonville, Department of Emergency Medicine, Jacksonville, FL
| |
Collapse
|
7
|
Youn CS, Yi H, Kim YJ, Song H, Kim N, Kim WY. Early Identification of Resuscitated Patients with a Significant Coronary Disease in Out-of-Hospital Cardiac Arrest Survivors without ST-Segment Elevation. J Clin Med 2021; 10:jcm10235688. [PMID: 34884390 PMCID: PMC8658463 DOI: 10.3390/jcm10235688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to develop a machine learning (ML)-based model for identifying patients who had a significant coronary artery disease among out-of-hospital cardiac arrest (OHCA) survivors without ST-segment elevation (STE). This multicenter observational study used data from the Korean Hypothermia Network prospective registry (KORHN-PRO) gathered between October 2015 and December 2018. We used information available before targeted temperature management (TTM) as predictor variables, and the primary outcome was a significant coronary artery lesion in coronary angiography (CAG). Among 1373 OHCA patients treated with TTM, 331 patients without STE who underwent CAG were enrolled. Among them, 127 patients (38.4%) had a significant coronary artery lesion. Four ML algorithms, namely regularized logistic regression (RLR), random forest classifier (RF), CatBoost classifier (CBC), and voting classifier (VC), were used with data collected before CAG. The VC model showed the highest accuracy for predicting significant lesions (area under the curve of 0.751). Eight variables (older age, male, initial shockable rhythm, shorter total collapse duration, higher glucose and creatinine, and lower pH and lactate) were significant to ML models. These results showed that ML models may be useful in developing early predictive tools for identifying high-risk patients with a significant stenosis in CAG.
Collapse
Affiliation(s)
- Chun-Song Youn
- Department of Emergency Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (C.-S.Y.); (H.S.)
| | - Hahn Yi
- Asan Medical Center, Asan Institute for Life Sciences, Seoul 05505, Korea;
| | - Youn-Jung Kim
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Hwan Song
- Department of Emergency Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (C.-S.Y.); (H.S.)
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: (N.K.); (W.-Y.K.)
| | - Won-Young Kim
- Department of Emergency Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (N.K.); (W.-Y.K.)
| |
Collapse
|