1
|
Yossri D, Din NHKE, Afifi NS, Adel-Khattab D. Soft tissue response to titanium healing abutments treated by Er: YAG laser or plasma spray: A randomized controlled feasibility clinical study with SEM and histological analysis. Clin Implant Dent Relat Res 2025; 27:e13373. [PMID: 39410747 DOI: 10.1111/cid.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVE Soft tissue seal around implants ensures stable osseointegration and a long-term survival of dental implants. Different surface modification and decontamination for implant abutments were endorsed in order to improve peri-implant soft tissue healing, such as laser, plasma spray, acid etching, and steaming. The aim of this study was to evaluate the response of peri-implant soft tissue to titanium abutments treated with Erbium-doped: Yttrium-Aluminum-Garnet (Er:YAG) laser versus plasma spray. METHODS Twenty-four patients who required implant placement in the maxillary arch participated in this study. Patients were divided into three groups, abutments treated with Er:YAG laser versus cold plasma spray and untreated abutments. Fourteen days following the implant abutment insertion, soft tissue peri-implant biopsies were taken for histological, histochemical, and immunohistochemical evaluation. Scanning electron microscopy was done for the abutments; plaque index (PI) and gingival index (GI) were assessed 14 days and 3 months following final restoration. RESULTS Regarding the histological results, the least mean inflammatory cell count was in the plasma group (174.09 ± 40.67), followed by the laser group (654.27 ± 85.95) and the control group (852.00 ± 117.98), with statistically significant differences between them. The mean area fraction of collagen fibers showed the highest value in the plasma group (9.73 ± 1.91), followed by the laser group (3.25 ± 0.49), while the lowest value was found in the control group (1.17 ± 0.51). The immunohistochemical expression of E-cadherin was significantly higher and uniformly distributed in the plasma group (42.4 ± 11.2%) followed by the laser group (15.4 ± 4.07%) and the control group (6.8 ± 1.7%). SEM analysis of healing abutments showed fibroblast-like cells, which were more developed with dense fibers in the plasma group; laser group fibers showed fewer and more delicate fibers than the plasma group, while no fibers were detected in the control group. CONCLUSION Within the limitations of this feasibility study, the present data concluded that plasma spray and Erbium: YAG laser can be used for abutment surface treatment to achieve better peri-implant soft tissue healing. Clinically and histologically, plasma spray showed a better effect on the peri-implant soft tissues by reducing the inflammatory reaction, promoting collagen fiber formation, higher fibroblast-like cell attachment, and upregulating E-cadherin expression than Erbium: YAG laser and control groups.
Collapse
Affiliation(s)
- Dalia Yossri
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Nevine H Kheir El Din
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Nermeen Sami Afifi
- Department of Oral Pathology, Faculty of Dentistry, Ain Shams University and Misr International University, Cairo, Egypt
| | - Doaa Adel-Khattab
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Abouel Maaty FAN, Ragab MA, El-Ghazawy YM, Elfaiedi FI, Abbass MMS, Radwan IA, Rady D, El Moshy S, Korany NS, Ahmed GM, Dörfer CE, El-Sayed KMF. Peri-Implant Soft Tissue in Contact with Zirconium/Titanium Abutments from Histological and Biological Perspectives: A Concise Review. Cells 2025; 14:129. [PMID: 39851556 PMCID: PMC11763997 DOI: 10.3390/cells14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Dental implants are crucial in contemporary oral rehabilitation, necessitating optimal integration with the surrounding soft tissues for durable success. The attachment between the implant surface and peri-implant mucosa should establish a secure seal to prevent bacterial infiltration and subsequent tissue inflammation. This concise review examines the histological and biological perspectives of peri-implant soft tissue reactions to zirconium and titanium abutments, shedding light on their respective advantages and limitations. While titanium has been the gold standard, zirconia has gained attention due to its biocompatibility and aesthetic appeal. Histological studies show comparable soft tissue attachment and inflammatory responses between the two materials. Further research is needed to explore surface treatments and optimize outcomes in dental implant rehabilitation.
Collapse
Affiliation(s)
- Fatma A. N. Abouel Maaty
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (F.A.N.A.M.); (M.M.S.A.); (I.A.R.); (D.R.); (S.E.M.); (N.S.K.)
| | - Mai A. Ragab
- Oral Biology Department, Faculty of Dentistry, Ahram Canadian University, 6th of October City 12451, Egypt;
| | - Yasmin M. El-Ghazawy
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Future University, Cairo 11835, Egypt;
| | - Fatma I. Elfaiedi
- Oral Biology Department, Faculty of Dentistry, Sirte University, Sirte 674, Libya;
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (F.A.N.A.M.); (M.M.S.A.); (I.A.R.); (D.R.); (S.E.M.); (N.S.K.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11835, Egypt;
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (F.A.N.A.M.); (M.M.S.A.); (I.A.R.); (D.R.); (S.E.M.); (N.S.K.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11835, Egypt;
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (F.A.N.A.M.); (M.M.S.A.); (I.A.R.); (D.R.); (S.E.M.); (N.S.K.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11835, Egypt;
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (F.A.N.A.M.); (M.M.S.A.); (I.A.R.); (D.R.); (S.E.M.); (N.S.K.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11835, Egypt;
| | - Nahed Sedky Korany
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 12613, Egypt; (F.A.N.A.M.); (M.M.S.A.); (I.A.R.); (D.R.); (S.E.M.); (N.S.K.)
| | - Geraldine M. Ahmed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11835, Egypt;
- Department of Endodontics, Faculty of Dentistry, Cairo University, Cairo 11835, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24118 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11835, Egypt;
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24118 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11835, Egypt
| |
Collapse
|
3
|
Khurana S, Li Y, Kesterke M, Liu X, Zandinejad A. Comparative evaluation of human oral fibroblast proliferation on 3D-printed zirconia and silicon nitride as new ceramic materials for implant abutment. J Prosthodont 2024. [PMID: 39558124 DOI: 10.1111/jopr.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024] Open
Abstract
PURPOSE Cell adhesion and subsequent proliferation on material surfaces depend on the physical and chemical characteristics of the material. There is a lack of literature on human gingival fibroblast proliferation on comparatively newer additively manufactured materials like silicon nitride. This study focused on the physical characteristics of the materials with the aim to compare the adhesion and proliferation of human gingival fibroblasts on additively manufactured silicon nitride (AMSN) with additively manufactured zirconia, conventional milled titanium (MTi), and milled zirconia. MATERIALS AND METHODS Surface roughness and water contact angle were measured by profilometer and goniometer, respectively. CCK-8 assay was done to assess the cell growth at 24 h (day 1), 48 h (day 2), and 72 h (day 3) in the same well. The morphologies of fibroblasts after cell attachment and proliferation were evaluated using scanning electron microscopy (SEM) after 72 h. RESULTS At the end of 24 h (day 1) additively manufactured zirconia showed the best proliferation among the experimental groups, which was around 50% of the positive control group proliferation. There was no statistically significant difference among the experimental groups. At 48 h (day 2) and 72 h (day 3), a loss of cell growth was seen in almost all the experimental group wells. A positive cell proliferation on the AMSN was observed on day 3. CONCLUSION Comparable cell proliferation was observed in the experimental groups. No conclusive correlation could be drawn between cell proliferation and surface roughness and water contact angle values in the experimental groups.
Collapse
Affiliation(s)
- Saumya Khurana
- Department of Biomedical Science, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Yingzi Li
- Chemical and Biomedical Engineering Department, University of Missouri, Columbia, Missouri, USA
| | - Matthew Kesterke
- Department of Orthodontics, College of Dentistry, Texas A&M University, Dallas, Texas, USA
| | - Xiaohua Liu
- Chemical and Biomedical Engineering Department, University of Missouri, Columbia, Missouri, USA
| | - Amirali Zandinejad
- Implant Dentistry Associates of Arlington, Arlington, Texas, USA
- Department of Prosthodontics, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
4
|
Rattanapitak R, Thong-Ngarm W. Human gingival fibroblast response on zirconia and titanium implant abutment: A systematic review. J Prosthodont 2024. [PMID: 39375915 DOI: 10.1111/jopr.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The peri-implant region, where restoration interfaces with mucosal tissue, plays an essential role in overall implant success and is just as important as osseointegration. The implant abutment materials are in intimate contact with human gingival fibroblasts (HGFs). This study compares the proliferation of HGFs between zirconia and titanium abutments used in dental implants. METHODS An electronic search was performed using PubMed, EMBASE, and Web of Science databases. English articles based on in vitro studies testing HGFs proliferation on zirconia and titanium implant abutment materials were included. A quality assessment of the selected study was performed using the web-based Science in Risk Assessment and Policy (SciRAP) tool. The HGFs proliferation and cellular morphology tests on zirconia and titanium materials from the included studies were summarized, exploring the role of material surface characteristics. RESULTS The electronic search yielded 401 studies, of which 17 were selected for inclusion. Zirconia exhibited comparable or superior efficacy in promoting the proliferation of HGFs compared to titanium. Observations on cellular morphology showed similar outcomes for both materials. Establishing a definitive relationship between contact angle, surface roughness, and their influence on cellular response remains challenging due to the varied methodological approaches in the reviewed studies. CONCLUSION Based on the findings of this systematic review, zirconia shows comparable reliability to titanium as an abutment material for HGFs proliferation, with comparable or superior HGFs proliferative outcomes.
Collapse
Affiliation(s)
- Ratanatip Rattanapitak
- Division of Crowns and Bridges, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Weeranuch Thong-Ngarm
- Division of Crowns and Bridges, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Hosseini M, Worsaae N, Gotfredsen K. SURVIVAL RATE OF IMPLANT-SUPPORTED, SINGLE-TOOTH RESTORATIONS BASED ON ZIRCONIA OR METAL ABUTMENT IN PATIENTS WITH TOOTH AGENESIS: A 5-YEARS PROSPECTIVE CLINICAL STUDY. J Evid Based Dent Pract 2024; 24:101970. [PMID: 38821661 DOI: 10.1016/j.jebdp.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/13/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVES The primary aim was to investigate survival rate of zirconia versus metal abutments, and the secondary aim was clinical outcomes of all-ceramic versus metal-ceramic crowns on single-tooth implants. METHODS Patients with tooth-agenesis participated to previously published prospective clinical study with 3-year follow-up were recalled after 5 years. Biological variables included survival and success rate of implants, marginal bone level, modified Plaque and Sulcus Bleeding Index and biological complications. Technical variables included restoration survival rate, marginal adaptation and technical complications. The aesthetic outcome of crowns and peri-implant mucosa in addition to patient-reported outcome were recorded. Descriptive analysis, linear mixed model for quantitative data, or generalized linear mixed model for ordinal categorical data were applied; significance was set to 0.05. RESULTS Fifty-three patients (mean age: 32.4 years), with 89 implants participated to the 5-years examination. The implants supported 50 zirconia abutments with 50 all-ceramic (AC) crown and 39 metal abutments with 29 metal-ceramic (MC) and 10 AC crowns. The Implant and restoration survival rate was 100% and 96%, respectively. No clinically relevant biological difference between implants supporting metal or zirconia abutments was registered. The technical complications were veneering fracture of AC-crowns (n = 3), crown loosening of MC-crowns (n = 4) and one abutment screw loosening (MC-crown on metal abutment). MC-crowns had significantly better marginal adaptation than AC-crowns (p = .01). AC-crowns had significantly better color and morphology than MC-crowns (p = .01). CONCLUSIONS Zirconia-based single-tooth restorations are reliable alternative materials to metal-based restorations with favorable biological and aesthetic outcome, and few technical complications.
Collapse
Affiliation(s)
- Mandana Hosseini
- Section of Oral Rehabilitation, Department of Odontology, Faculty of Health Science, University of Copenhagen, Copenhagen N-2200, Denmark.
| | - Nils Worsaae
- Department of Oral and Maxillofacial Surgery, University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Klaus Gotfredsen
- Section of Oral Rehabilitation, Department of Odontology, Faculty of Health Science, University of Copenhagen, Copenhagen N-2200, Denmark
| |
Collapse
|
6
|
Rabel K, Blankenburg A, Steinberg T, Kohal RJ, Spies BC, Adolfsson E, Witkowski S, Altmann B. Gingival fibroblast response to (hybrid) ceramic implant reconstruction surfaces is modulated by biomaterial type and surface treatment. Dent Mater 2024; 40:689-699. [PMID: 38395737 DOI: 10.1016/j.dental.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES Surface characteristics of implant reconstructions determine the gingival fibroblast (GF) response and thus soft tissue integration (STI). However, for monolithic implant reconstructions it is unknown whether the (hybrid) ceramic biomaterial type and its surface treatment affect GF response. Therefore, this investigation examined the influence of the implant reconstruction biomaterials hybrid ceramic (HC), lithium disilicate ceramic (LS), 4 and 5 mol% yttria partially stabilized zirconiumdioxide ceramics (4/5Y-PSZ) and their surface treatment - machining, polishing or glazing - on surface characteristics and GF response. METHODS After characterization of surface topography and wettability by scanning electron microscopy, interferometry and contact angle measurement, the adhesion, morphology, metabolic activity and proliferation of GFs from six donors was investigated by fluorescent staining and a resazurin-based assay at days 1, 3 and 7. Titanium (Ti) served as control. RESULTS Biomaterial type and surface treatment affected the GF response in a topography-dependent manner. Smooth polished and glazed surfaces demonstrated enhanced GF adhesion and earlier proliferation onset compared to rough machined surfaces. Due to minor differences in surface topography of polished and glazed surfaces, however, the GF response was similar for polished and glazed HC, LS, 4- and 5Y-PSZ as well as Ti. SIGNIFICANCE Within the limits of the present investigation, polishing and glazing of machined HC, LS and 4/5Y-PSZ can be recommended to support STI-relevant cell functions in GF. Since the GF response on polished and glazed HC, LS, 4- and 5Y-PSZ surfaces and the Ti control was comparable, this investigation proofed equal cytocompatibility of these surfaces in vitro.
Collapse
Affiliation(s)
- Kerstin Rabel
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany.
| | - Andrea Blankenburg
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Ralf J Kohal
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Benedikt C Spies
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Erik Adolfsson
- Division Materials and Production, RISE Research Institutes of Sweden, Argongatan 30, 43153 Mölndal, Sweden
| | - Siegbert Witkowski
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany
| | - Brigitte Altmann
- Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; G.E.R.N Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Prosthetic Dentistry, Center for Dental Medicine, Medical Center ‑ University of Freiburg, Faculty of Medicine, University of Freiburg, Engesserstr. 4, 79108 Freiburg, Germany
| |
Collapse
|
7
|
Chen T, Jinno Y, Atsuta I, Tsuchiya A, Obinata S, Iimori R, Kimura T, Ayukawa Y. Synergistic Effect of Nano Strontium Titanate Coating and Ultraviolet C Photofunctionalization on Osteogenic Performance and Soft Tissue Sealing of poly(ether-ether-ketone). ACS Biomater Sci Eng 2024; 10:825-837. [PMID: 38267012 PMCID: PMC10866145 DOI: 10.1021/acsbiomaterials.3c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
This study aimed to evaluate the bioactivity of poly(ether ether ketone) (PEEK) after surface modification by persistent photoconductive strontium titanate (SrTiO3) magnetron sputtering and ultraviolet (UV) C irradiation. According to the different modifications, the PEEK specimens were randomly divided into five groups (n = 38/group): PEEK, Sr100-PEEK, Sr200-PEEK, UV/PEEK, and UV/Sr200-PEEK. Then, the specimens of Sr100-PEEK and Sr200-PEEK groups were, respectively, coated with 100 and 200 nm thickness photocatalyst SrTiO3 on the PEEK surface by magnetron sputtering. Subsequently, UV-C light photofunctionalized the specimens of PEEK and Sr200-PEEK groups to form UV/PEEK and UV/Sr200-PEEK groups. The specimens were characterized by a step meter, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), and a water contact angle meter. The release test of the Sr ion was performed by inductively coupled plasma mass spectrometry (ICP-MS). In vitro study, osteogenic activity (MC3T3-E1 osteoblast-like cells) and epithelial and connective tissue attachment (gingival epithelial cells GE1 and fibroblasts NIH3T3) were analyzed in five groups. Surface morphology of the specimens was changed after coating, and the Sr content on the Sr-PEEK surface was increased with increasing coating thickness. In addition, the contact angle was increased significantly after magnetron sputtering. After UV-C photofunctionalization, the content of surface elements changed and the contact angle was decreased. The release of Sr ion was sustained, and the final cumulative release amount did not exceed the safety limit. In vitro experiments showed that SrTiO3 improved the cell activity of MC3T3-E1 and UV-C irradiation further enhanced the osteogenic performance of PEEK. Besides, UV-C irradiation also significantly promoted the cell viability, development, and expression of adhesion proteins of GE1 and NIH3T3 on PEEK. The present investigation demonstrated that nano SrTiO3 coating with UV-C photofunctionalization synergistically enhanced the osteogenic properties and soft tissue sealing function of PEEK in vitro.
Collapse
Affiliation(s)
- Tianjie Chen
- Section
of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Jinno
- Section
of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ikiru Atsuta
- Division
of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Tsuchiya
- Department
of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Sora Obinata
- Department
of Physics, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Riku Iimori
- Department
of Physics, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Kimura
- Department
of Physics, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yasunori Ayukawa
- Section
of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation,
Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
8
|
Zhao D, Leng Y, Liu Y, Zhou X. Effect of calcium hydrothermal treatment of zirconia abutments on human gingival fibroblasts. J Biomed Mater Res B Appl Biomater 2023; 111:1883-1889. [PMID: 37289176 DOI: 10.1002/jbm.b.35291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Zirconia materials have been increasingly used in implant rehabilitation due to their excellent physical and esthetic properties. Stable peri-implant epithelial tissue adhesion to the transmucosal implant abutment may significantly enhance the efficacy of implant long-term stability. However, it is difficult to form stable chemical or biological bindings with peri-implant epithelial tissue due to the strong biological inertia of zirconia materials. In the present study, we investigated whether calcium hydrothermal treatment of zirconia promotes sealing of peri-implant epithelial tissue. In vitro experiments were performed to analyze the effects of calcium hydrothermal treatment on zirconia surface morphology and composition by scanning electron microscopy and energy dispersive spectrometry. Immunofluorescence staining of adherent proteins, namely, F-actin and integrin β1, in human gingival fibroblast line (HGF-l) cells was performed. In the calcium hydrothermal treatment group, there was higher expression of these adherent proteins and increased HGF-l cell proliferation. An in vivo study was conducted by extracting the maxillary right first molars of rats and replacing them with mini-zirconia abutment implants. The calcium hydrothermal treatment group showed better attachment at the zirconia abutment surface, which inhibited horseradish peroxidase penetration at 2 weeks post-implantation. These results demonstrated that calcium hydrothermal treatment of zirconia improves the seal between the implant abutment and surrounding epithelial tissues, potentially increasing the long-term stability of the implant.
Collapse
Affiliation(s)
- Dan Zhao
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yanjun Leng
- School of Stomatology, Central South University, Changsha, China
| | - Yishu Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xudiyang Zhou
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Obădan ME, Mitruț I, Ionescu M, Obădan F, Târtea DA, Popescu MA, Popescu SM, Smarandache AM, Manolea HO. Clinical Efficacy Analysis of the Personalization of Prosthetic Abutments in Implant Supported Restorations in Comparison to Available Standard Titanium Abutments. J Pers Med 2023; 13:1402. [PMID: 37763169 PMCID: PMC10532739 DOI: 10.3390/jpm13091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Personalized medicine has become an important direction to offer better solutions for health problems. In implantology, this trend was materialized through customizing dental abutments to each clinical situation. The demands for better esthetics and function of implant-supported restorations have imposed a more personalized variety of prosthetic abutments. This retrospective study compared clinical efficiency of personalized implant abutments with standard implant abutments in multiple implant restorations. Clinical data of patients who were admitted in a private clinic between 2011 and 2022 and received dental implant treatments were collected. All complications and undesired events from the patients' medical record charts were statistically analyzed. The implants were loaded using either standard or customized abutments. For complete arch rehabilitations with the SKY Fast & Fixed protocol, standard titanium prosthetic abutments were used. Our results suggest that the abutments choice for patients has moved throughout the years more towards the use of customized abutments. The number of customized abutments (414) was higher compared with the number of standard abutments (293). In our database, the most used abutments for the anterior area implants were made of titanium and zirconia, whereas for the posterior area, the preferred abutments were mostly titanium. The standard abutments were used almost entirely for immediate loading and implantation in both anterior and posterior areas (Fast & Fixed protocol). Complications were encountered mainly in restorations with standard abutments (9.22%) compared to customized abutments (2.7%), with titanium abutments being the most reliable, having only 1.79% complications.
Collapse
Affiliation(s)
- Magdalena Eugenia Obădan
- Department of Dental Materials, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ioana Mitruț
- Department of Dental Materials, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Florian Obădan
- Department of Dental Materials, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniel Adrian Târtea
- Department of Oral Rehabilitation, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Marcel Adrian Popescu
- Department of Oral Rehabilitation, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sanda Mihaela Popescu
- Department of Oral Rehabilitation, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andreea Maria Smarandache
- Department of Dental Prosthetics, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Horia Octavian Manolea
- Department of Dental Materials, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
10
|
Laleman I, Lambert F, Gahlert M, Bacevic M, Woelfler H, Roehling S. The effect of different abutment materials on peri-implant tissues-A systematic review and meta-analysis. Clin Oral Implants Res 2023; 34 Suppl 26:125-142. [PMID: 37750527 DOI: 10.1111/clr.14159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVES In patients with dental implants, what is the effect of transmucosal components made of materials other than titanium (alloys) compared to titanium (alloys) on the surrounding peri-implant tissues after at least 1 year? MATERIALS AND METHODS This systematic review included eligible randomized controlled trials identified through an electronic search (Medline, Embase and Web of Science) comparing alternative abutment materials versus titanium (alloy) abutments with a minimum follow-up of 1 year and including at least 10 patients/group. Primary outcomes were peri-implant marginal bone level (MBL) and probing depth (PD), these were evaluated based on meta-analyses. Abutment survival, biological and technical complications and aesthetic outcomes were the secondary outcomes. The risk of bias was assessed with the RoB2-tool. This review is registered in PROSPERO with the number (CRD42022376487). RESULTS From 5129 titles, 580 abstracts were selected, and 111 full-text articles were screened. Finally, 12 articles could be included. Concerning the primary outcomes (MBL and PD), no differences could be seen between titanium abutment and zirconia or alumina abutments, not after 1 year (MBL: zirconia: MD = -0.24, 95% CI: -0.65 to 0.16, alumina: MD = -0.06, 95% CI: -0.29 to 0.17) (PD: zirconia: MD = -0.06, 95% CI: -0.41 to 0.30, alumina: MD = -0.29, 95% CI: -0.96 to 0.38), nor after 5 years. Additionally, no differences were found concerning the biological complications and aesthetic outcomes. The most important technical finding was abutment fracture in the ceramic group and chipping of the veneering material. CONCLUSIONS Biologically, titanium and zirconia abutments seem to function equally up to 5 years after placement.
Collapse
Affiliation(s)
- I Laleman
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), Faculty of Medicine, University of Liège, Liège, Belgium
| | - F Lambert
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), Faculty of Medicine, University of Liège, Liège, Belgium
| | - M Gahlert
- Private Dental Clinic PD Dr. Gahlert & PD Dr. Roehling, Munich, Germany
- Sigmund Freud Private University, Vienna, Austria
- Clinic for Oral and Cranio-Maxillofacial Surgery, Hightech Research Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - M Bacevic
- Department of Periodontology and Oral Surgery, Faculty of Medicine, University of Liège, Liège, Belgium
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London (QMUL), London, UK
| | - H Woelfler
- Professor for Demography, University of Bamberg, Bamberg, Germany
| | - S Roehling
- Private Dental Clinic PD Dr. Gahlert & PD Dr. Roehling, Munich, Germany
- Clinic for Oral and Cranio-Maxillofacial Surgery, Hightech Research Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Oral and Cranio-Maxillofacial Surgery, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
11
|
Tang K, Luo ML, Zhou W, Niu LN, Chen JH, Wang F. The integration of peri-implant soft tissues around zirconia abutments: Challenges and strategies. Bioact Mater 2023; 27:348-361. [PMID: 37180640 PMCID: PMC10172871 DOI: 10.1016/j.bioactmat.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Stable soft tissue integration around the implant abutment attenuates pathogen penetration, protects underlying bone tissue, prevents peri-implantitis and is essential in maintaining long-term implant stability. The desire for "metal free" and "aesthetic restoration" has favored zirconia over titanium abutments, especially for implant restorations in the anterior region and for patients with thin gingival biotype. Soft tissue attachment to the zirconia abutment surface remains a challenge. A comprehensive review of advances in zirconia surface treatment (micro-design) and structural design (macro-design) affecting soft tissue attachment is presented and strategies and research directions are discussed. Soft tissue models for abutment research are described. Guidelines for development of zirconia abutment surfaces that promote soft tissue integration and evidence-based references to inform clinical choice of abutment structure and postoperative maintenance are presented.
Collapse
Affiliation(s)
- Kai Tang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Meng-Lin Luo
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, The First Medical Center, Chinese PLA General Hospital & Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhou
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Li-Na Niu
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji-Hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| | - Fu Wang
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology &Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Corresponding author.
| |
Collapse
|
12
|
Hu J, Atsuta I, Luo Y, Wang X, Jiang Q. Promotional Effect and Molecular Mechanism of Synthesized Zinc Oxide Nanocrystal on Zirconia Abutment Surface for Soft Tissue Sealing. J Dent Res 2023; 102:505-513. [PMID: 36883651 DOI: 10.1177/00220345221150161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Studies have confirmed that tooth loss is closely related to systemic diseases, such as obesity, diabetes, cardiovascular diseases, some types of tumors, and Alzheimer's disease. Among many methods for tooth restoration, implant restoration is the most commonly used method. After implantation, long-term stability of implants requires not only good bone bonding but also good soft tissue sealing between implants and surrounding soft tissues. The zirconia abutment is used in clinical implant restoration treatment, but due to the strong biological inertia of zirconia, it is difficult to form stable chemical or biological bonds with surrounding tissues. In this study, we investigated synthesized zinc oxide (ZnO) nanocrystal on the zirconia abutment surface by the hydrothermal method to make it more beneficial for soft tissue early sealing and the molecular mechanism. In vitro experiments found that different hydrothermal treatment temperatures affect the formation of ZnO crystals. The crystal diameter of ZnO changes from micron to nanometer at different temperatures, and the crystal morphology also changes. In vitro, scanning electron microscopy, energy dispersive spectrometry, and real-time polymerase chain reaction results show that ZnO nanocrystal can promote the attachment and proliferation of oral epithelial cells on the surface of zirconia by promoting the binding of laminin 332 and integrin β4, regulating the PI3K/AKT pathway. In vivo, ZnO nanocrystal ultimately promotes the formation of soft tissue seals. Collectively, ZnO nanocrystal can be synthesized on a zirconia surface by hydrothermal treatment. It can help to form a seal between the implant abutment and surrounding soft tissue. This method is beneficial to the long-term stability of the implant and also can be applied to other medical fields.
Collapse
Affiliation(s)
- J Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - I Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Y Luo
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - X Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Q Jiang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Wang WR, Li J, Gu JT, Hu BW, Qin W, Zhu YN, Guo ZX, Ma YX, Tay F, Jiao K, Niu L. Optimization of Lactoferrin-Derived Amyloid Coating for Enhancing Soft Tissue Seal and Antibacterial Activity of Titanium Implants. Adv Healthc Mater 2023; 12:e2203086. [PMID: 36594680 DOI: 10.1002/adhm.202203086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Indexed: 01/04/2023]
Abstract
A poor seal of the titanium implant-soft tissue interface provokes bacterial invasion, aggravates inflammation, and ultimately results in implant failure. To ensure the long-term success of titanium implants, lactoferrin-derived amyloid is coated on the titanium surface to increase the expression of cell integrins and hemidesmosomes, with the goal of promoting soft tissue seal and imparting antibacterial activity to the implants. The lactoferrin-derived amyloid coated titanium structures contain a large number of amino and carboxyl groups on their surfaces, and promote proliferation and adhesion of epithelial cells and fibroblasts via the PI3K/AKT pathway. The amyloid coating also has a strong positive charge and possesses potent antibacterial activities against Staphylococcus aureus and Porphyromonas gingivalis. In a rat immediate implantation model, the amyloid-coated titanium implants form gingival junctional epithelium at the transmucosal region that resembles the junctional epithelium in natural teeth. This provides a strong soft tissue seal to wall off infection. Taken together, lactoferrin-derived amyloid is a dual-function transparent coating that promotes soft tissue seal and possesses antibacterial activity. These unique properties enable the synthesized amyloid to be used as potential biological implant coatings.
Collapse
Affiliation(s)
- Wan-Rong Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Jing Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Jun-Ting Gu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Bo-Wen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wen Qin
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Yi-Na Zhu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Zhen-Xing Guo
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Yu-Xuan Ma
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Franklin Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Lina Niu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
14
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
15
|
Sun C, Zhao H, Wang L, Zhang J, Zheng J, Yang Z, Huang L, Wang L, Liu C, Li D, Li Q. Additive manufactured polyether-ether-ketone composite scaffolds with hydroxyapatite filler and porous structure promoted the integration with soft tissue. BIOMATERIALS ADVANCES 2022; 141:213119. [PMID: 36152523 DOI: 10.1016/j.bioadv.2022.213119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Additive Manufactured (AM) Polyether-ether-ketone (PEEK) orthopaedic implants offer new opportunities for bone substitutes. However, owing to its chemical inertness, the integration between PEEK implants and soft tissue represents a major challenge threatening the early success of the PEEK implants. Here we investigated the influence of hydroxyapatite (HA) fillers and porous structure of AM HA/PEEK scaffolds on the integration with soft tissue through in-vitro cellular experiments and in-vivo rabbit experiments. Among the animal experiments, HA/PEEK composite scaffolds with HA contents of 0, 20 wt%, 40 wt% and pore sizes of 0.8 mm, 1.6 mm were manufactured by fused filament fabrication. The results indicated that HA promoted the proliferation and adhesion of myofibroblasts on PEEK-based composites by releasing Ca2+ to active FAK and its downstream proteins, while the surface morphology of the scaffolds was also roughened by the HA particles, both of which led to the tighter adhesion between HA/PEEK scaffolds and soft tissue in-vivo. The macroscopic bonding force between soft tissue and scaffolds was dominated by the pore size of the scaffolds but was hardly affected by neither the HA content and nor the surface morphology. Scaffolds with larger pore size bonded more strongly to the soft tissue, and the maximum bonding force reached to 5.61 ± 2.55 N for 40 wt% HA/PEEK scaffolds with pore size of 1.6 mm, which was higher than that between natural bone and soft tissue of rabbits. Although the larger pore size and higher HA content of the PEEK-based scaffolds facilitated the bonding with the soft tissue, the consequent outcome of reduced mechanical properties has to be compromised in the design of the porous PEEK-based composite implants. The present study provides engineering-accessible synergistic strategies on material components and porous architecture of AM PEEK orthopaedic implants for improving the integration with soft tissue.
Collapse
Affiliation(s)
- Changning Sun
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Huiyu Zhao
- Department of Spine Surgery, Center for Orthopaedic Surgery, Academy of Orthopedics, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, 510665, Guangzhou, China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Jinghua Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China
| | - Jibao Zheng
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China
| | - Zijian Yang
- Department of Spine Surgery, Center for Orthopaedic Surgery, Academy of Orthopedics, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, 510665, Guangzhou, China
| | - Lijun Huang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China.
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, 710054 Xi'an, ShaanXi, China.
| | - Qingchu Li
- Department of Spine Surgery, Center for Orthopaedic Surgery, Academy of Orthopedics, Orthopaedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, 510665, Guangzhou, China.
| |
Collapse
|
16
|
Histologic Evaluation of Soft Tissues around Dental Implant Abutments: A Narrative Review. MATERIALS 2022; 15:ma15113811. [PMID: 35683109 PMCID: PMC9181750 DOI: 10.3390/ma15113811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 01/28/2023]
Abstract
The basis for dental implant success comes not only with the titanium implant osseointegration but also depends on other factors such as the development of a soft tissue barrier, which protects the peri-implant bone from the oral environment. The characteristics of surfaces in contact with peri-implant soft tissues may affect the capacity of peri-implant mucosal cells to create a tight seal around the implant, thus influencing long-term implant success. Many histological studies on animals have been conducted on different materials to better understand their influence on peri-implant soft tissues, with the limitation that results from animal studies cannot be fully translated in humans. The aim of this review paper was to analyze the literature focusing on histological clinical studies in humans which have examined different materials or different surface treatments and their effects on peri-implant soft tissues. The research was conducted according to the following PICO question: “Do different implant/abutment materials affect peri-implant soft tissues adhesion and health?”. Nine articles were analyzed in this review. The results of this review show the influence of different abutment materials on the peri-implant soft tissues, and the need of further research regarding the effect that abutment materials, surface treatments, and surface properties have on soft tissues.
Collapse
|
17
|
Fu Z, Deng X, Fang X. Effect of addition of Ca 2+ to titanium by a hydrothermal method on soft tissue sealing. Microsc Res Tech 2022; 85:3050-3055. [PMID: 35567791 DOI: 10.1002/jemt.24152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
The long-term stability of implants requires good peri-implant soft tissue sealing. Calcium ion (Ca2+ ) was loaded onto titanium surface by a hydrothermal method. In vitro, the morphology and composition of titanium surfaces were determined by scanning electron microscopy and energy-dispersive spectroscopy; proliferation of hGF-1 cells was measured by the CCK-8 assay; immunofluorescence staining was done to detect adherent proteins on titanium surface. In vivo, the degree of attachment between the implant and the surrounding soft tissue was measured by horseradish peroxidase (HRP). The percentage of hGF-1 cells adhering in the Ca group was significantly higher (p < .01); the fluorescence of integrin-β1 and F-actin in the Ca group was stronger; Ca group had the shorter length of HRP (p < .01). Ca2+ can be added to the surface of titanium by a hydrothermal method and it will be more beneficial for soft tissue early sealing.
Collapse
Affiliation(s)
- Zhendi Fu
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Xuehua Deng
- Department of Prosthodontics, Changsha Stomatological Hospital, Changsha, China
| | - Xiaodan Fang
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. Int J Biol Macromol 2022; 208:833-843. [PMID: 35367473 DOI: 10.1016/j.ijbiomac.2022.03.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Dental implants have been widely accepted as an ideal therapy to replace the missing teeth for its good performance in aspects of mechanical properties and aesthetic outcomes. Its restorative success is contributed by not only the successful osseointegration of the implant but also the tight soft tissue integration, especially the collagen fibers, in the transmucosal region. Soft tissue attaching to the dental implant/abutment is overall similar, but in some aspects distinct with that seen around natural teeth and soft tissue integration can be enhanced via several surface modification methods. This review is going to focus on the current knowledge of the transmucosal zone around the dental implants (compared with natural teeth), and latest strategies in use to fine-tune the collagen fibers assembly in the connective tissue, in an attempt to enhance soft tissue integration.
Collapse
|
19
|
Zheng Z, Ao X, Xie P, Zheng X, Lee K, Chen W. Nonthermal Plasma Brush Treatment on Titanium and Zirconia To Improve Periabutment Epithelium Formation. ACS Biomater Sci Eng 2021; 7:5039-5047. [PMID: 34637254 DOI: 10.1021/acsbiomaterials.1c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The peri-implant soft tissue with inferior adhesion takes a long healing period to form, which is undesirable for the reaction around the peri-implant soft tissues. The aim of this study is to improve the physicochemical properties of titanium (Ti) and zirconia (ZrO2) implant abutments and shorten the formation period of periabutment epithelium tissue. A nonthermal atmospheric plasma brush (NTAPB, N) was employed for Ti and ZrO2 activation. The surface topographies, roughness, crystallinity, wettability, and chemical elements of the abutment materials were examined. The epithelial cell behavior analysis and tissue remodeling of the periabutment epithelial tissue were performed in vitro and in vivo. N-Ti and N-ZrO2 had a similar good surface wettability, with a 65 and 70% increase in oxygen content and a 70 and 75% decrease in carbon content, respectively. Both N-Ti and N-ZrO2 showed excellent adhesion, spread, and proliferation of epithelial cells in vitro, with improved adhesion molecule expression levels compared to untreated samples. N-Ti and N-ZrO2 abutments were placed in the implantation sites of rats. From week 2 to week 6 after implantation, N-Ti and N-ZrO2 had similar periabutment epithelium tissue formation, and both had increased plectin-positive and laminin γ2-positive cell numbers compared to Ti and ZrO2. The NTAPB shows promising abutment modification abilities. It promotes the expression levels of adhesion molecules and the epithelial cell performance, which later leads to a quicker formation and remodeling of the important periabutment epithelial tissue.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Kevin Lee
- Department of Stomatology, Medical College of Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|