1
|
El-Tahir F, Esh A, Ghorab A, Shendi AM. Chemerin, TNF - α and the degree of albuminuria in patients with diabetic kidney disease. Cytokine 2024; 184:156772. [PMID: 39366065 DOI: 10.1016/j.cyto.2024.156772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Chronic inflammation has been increasingly recognized as an essential pathogenic mechanism for the development and progression of diabetic kidney disease (DKD). Chemerin is an adipokine which has been suggested to be related to inflammation and has been correlated with the development of diabetic complications. We aimed to explore the potential links between chemerin, TNF - α, as a marker of systemic inflammation, and the level of albuminuria in patients with type 2 diabetes mellitus (T2DM). METHOD The study included 84 patients with T2DM and 10 normoalbuminuric non-diabetic controls. Demographic, clinical and laboratory data including chemerin and TNF-α levels were collected. RESULTS A total of 84 diabetic patients were enrolled, 32 males (38.1 %), with mean age 57.9 ± 10.7 years. They were divided into 3 groups: A1: 14 with normalbuminuria, A2: 27 with microalbuminuria, and A3: 43 with macroalbuminuria (uACR < 30, 30-300 and > 300 mg/gm respectively). Chemerin and TNF-α levels increased with the progress of albuminuria (control: 21.3 (14.7 -77), A1: 794 (683-925), A2: 1150 (962.9 - 1221.5) and A3: 1466 (1197.5 - 2002.5) ng/ml; p < 0.001) and (control: 77.9 (59 - 96.8), A1: 85.2 (71-116.3), A2: 87.3 (81 - 97.5) and A3: 99 (85.1 - 142.5) pg/ml; p = 0.009) respectively. Among the diabetics, a significant association was evident between serum chemerin and serum TNF-α (r = 0.53; p < 0.001). On linear stepwise regression analysis, chemerin was significantly associated with TNF-α and HbA1c (unstandardized β 10.881 and 272.68 respectively, p < 0.001); and TNF-α was significantly correlated with chemerin, uACR (unstandardized β 0.059 and 0.004 respectively, p < 0.001) and HbA1c (unstandardized β -13.699, p = 0.014). CONCLUSION Our findings suggest a potential role of chemerin and TNF-α in the development and progression of DKD, and thus support the role of the inflammatory pathway. Larger follow up studies are warranted to further explore the potential links between chemerin, inflammation and DKD.
Collapse
Affiliation(s)
- Fatima El-Tahir
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Asmaa Esh
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Adel Ghorab
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ali M Shendi
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt; Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Yue G, An Q, Xu X, Jin Z, Ding J, Hu Y, Du Q, Xu J, Xie R. The role of Chemerin in human diseases. Cytokine 2023; 162:156089. [PMID: 36463659 DOI: 10.1016/j.cyto.2022.156089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
Chemerin is a protein encoded by the Rarres2 gene that acts through endocrine or paracrine regulation. Chemerin can bind to its receptor, regulate insulin sensitivity and adipocyte differentiation, and thus affect glucose and lipid metabolism. There is growing evidence that it also plays an important role in diseases such as inflammation and cancer. Chemerin has been shown to play a role in the pathogenesis of inflammatory and metabolic diseases caused by leukocyte chemoattractants in a variety of organs, but its biological function remains controversial. In conclusion, the exciting findings collected over the past few years clearly indicate that targeting Chemerin signaling as a biological target will be a major research goal in the future. This article reviews the pathophysiological roles of Chemerin in various systems and diseases,and expect to provide a rationale for its role as a clinical therapeutic target.
Collapse
Affiliation(s)
- Gengyu Yue
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Qimin An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaolin Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jianhong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China; The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China.
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China; The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
3
|
Ren Q, Wang H, Zeng Y, Fang X, Wang M, Li D, Huang W, Xu Y. Circulating chemerin levels in metabolic-associated fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis 2022; 21:27. [PMID: 35236351 PMCID: PMC8889738 DOI: 10.1186/s12944-022-01637-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Background and objectives Chemerin is a brand-new adipokine that has been linked to both inflammation and metabolic dysfunction. Even though a rising number of studies have connected chemerin to metabolic-associated fatty liver disease (MAFLD), formerly referred to as non-alcoholic fatty liver disease (NAFLD), this association has been controversial. Methods A comprehensive literature search was undertaken up to February 1, 2022, in the PubMed, Embase, Web of Science, CNKI, WANFANG, and CBM library databases. Circulating chemerin levels were obtained and summarized using the standardized mean difference (SMD) and 95% confidence interval (CI). Subgroup and meta-regression analyses were conducted to examine the possibility of heterogeneity. Results A total of 17 studies involving 2580 participants (1584 MAFLD patients and 996 controls) evaluated circulating chemerin levels in patients with MAFLD. The present study showed that higher chemerin levels were found in patients with MAFLD (SMD: 1.32; 95% CI: 0.29, 2.35) and nonalcoholic fatty liver (NAFL) (SMD: 0.75; 95% CI: 0.01, 1.50) compared to controls. However, circulating chemerin levels did not differ significantly in the following comparisons: nonalcoholic steatohepatitis (NASH) patients and controls (SMD: 0.75; 95% CI: -0.52, 2.03); NASH patients and NAFL patients (SMD: 0.16; 95% CI: -0.39, 0.70); moderate to severe steatosis and mild steatosis (SMD: 0.55; 95% CI: -0.59, 1.69); present liver fibrosis and absent liver fibrosis (SMD: 0.66; 95% CI: -0.42, 1.74); present lobular inflammation and absent lobular inflammation (SMD: 0.45; 95% CI: -0.53, 1.42); and present portal inflammation and absent portal inflammation (SMD: 1.92; 95% CI: -0.85, 4.69). Conclusions Chemerin levels were considerably greater in patients with MAFLD than in controls, despite the fact that they were not significantly linked to different liver tissue lesions of MAFLD. In different subtypes of MAFLD, in comparison to healthy controls, the chemerin levels of NAFL patients were higher, whereas, there was no obvious difference in chemerin levels between NASH patients and controls. It is possible that chemerin will be used as a biomarker in the future to track the development and progression of MAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01637-7.
Collapse
Affiliation(s)
- Qian Ren
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Hongya Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Xia Fang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China.,Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. .,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China. .,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. .,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. .,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China. .,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. .,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|