1
|
Abulí A, Antolín E, Borrell A, Garcia-Hoyos M, García Santiago F, Gómez Manjón I, Maíz N, González González C, Rodríguez-Revenga L, Valenzuena Palafoll I, Suela J. Guidelines for NGS procedures applied to prenatal diagnosis by the Spanish Society of Gynecology and Obstetrics and the Spanish Association of Prenatal Diagnosis. J Med Genet 2024; 61:727-733. [PMID: 38834294 DOI: 10.1136/jmg-2024-109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE This document addresses the clinical application of next-generation sequencing (NGS) technologies for prenatal genetic diagnosis and aims to establish clinical practice recommendations in Spain to ensure uniformity in implementing these technologies into prenatal care. METHODS A joint committee of expert obstetricians and geneticists was created to review the existing literature on fetal NGS for genetic diagnosis and to make recommendations for Spanish healthcare professionals. RESULTS This guideline summarises technical aspects of NGS technologies, clinical indications in prenatal setting, considerations regarding findings to be reported, genetic counselling considerations as well as data storage and protection policies. CONCLUSIONS This document provides updated recommendations for the use of NGS diagnostic tests in prenatal diagnosis. These recommendations should be periodically reviewed as our knowledge of the clinical utility of NGS technologies, applied during pregnancy, may advance.
Collapse
Affiliation(s)
- Anna Abulí
- Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
- Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Eugenia Antolín
- Gynecology and Obstetrics, La Paz University Hospital, Madrid, Spain
| | - Antoni Borrell
- Gynecology and Obstetrics, Clinic Hospital of Barcelona, Barcelona, Spain
| | | | | | | | - Nerea Maíz
- Maternal-Fetal Medicine Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
- Obstetrics, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics, Clinic Hospital of Barcelona, Barcelona, Spain
- August Pi Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | - Javier Suela
- Genetics, Sanitas Central Laboratory, Alcobendas, Spain
| |
Collapse
|
2
|
Li M, Hao N, Jiang Y, Xue H, Dai Y, Wang M, Bai J, Lv Y, Qi Q, Zhou X. Contribution of uniparental disomy to fetal growth restriction: a whole-exome sequencing series in a prenatal setting. Sci Rep 2024; 14:238. [PMID: 38168635 PMCID: PMC10762123 DOI: 10.1038/s41598-023-50584-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Fetal growth restriction (FGR), a leading cause of perinatal morbidity and mortality, is caused by fetal, maternal, and placental factors. Uniparental disomy (UPD) is a rare condition that leads to imprinting effects, low-level mosaic aneuploidies and homozygosity for pathogenic variants. In the present study, UPD events were detected in 5 women with FGR by trio exome sequencing (trio-WES) of a cohort of 150 FGR cases. Furthermore, noninvasive prenatal testing results of the 5 patients revealed a high risk of rare autosomal trisomy. Trio-WES showed no copy-number variations (CNVs) or nondisease-causing mutations associated with FGR. Among the 5 women with FGR, two showed gene imprinting, and two exhibited confined placental mosaicism (CPM) by copy number variant sequencing (CNV-seq). The present study showed that in FGR patients with UPD, the detection of imprinted genes and CPM could enhance the genetic diagnosis of FGR.
Collapse
Affiliation(s)
- Mengmeng Li
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Na Hao
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yulin Jiang
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huili Xue
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian, 350001, China
| | - Yifang Dai
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian, 350001, China
| | - Mingming Wang
- GenoDecode (Beijing) Co. Ltd., Beijing, 101160, China
| | - Junjie Bai
- Be Creative Lab (Beijing) Co. Ltd., Beijing, 100176, China
| | - Yan Lv
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qingwei Qi
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiya Zhou
- National Clinical Research Centre for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
3
|
Najib B, Quibel T, Tessier A, Mortreux J, Bouvagnet P, Cohen C, Vialard F, Dard R. Prenatal diagnosis of recurrent hypoplastic left heart syndrome associated with MYH6 variants: a case report. BMC Cardiovasc Disord 2023; 23:116. [PMID: 36890431 PMCID: PMC9993643 DOI: 10.1186/s12872-023-03169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Hypoplastic left heart syndrome (HLHS) is a rare but genetically complex and clinically and anatomically severe form of congenital heart disease (CHD). CASE PRESENTATION Here, we report on the use of rapid prenatal whole-exome sequencing for the prenatal diagnosis of a severe case of neonatal recurrent HLHS caused by heterozygous compound variants in the MYH6 gene inherited from the (healthy) parents. MYH6 is known to be highly polymorphic; a large number of rare and common variants have variable effects on protein levels. We postulated that two hypomorphic variants led to severe CHD when associated in trans; this was consistent with the autosomal recessive pattern of inheritance. In the literature, dominant transmission of MYH6-related CHD is more frequent and is probably linked to synergistic heterozygosity or the specific combination of a single, pathogenic variant with common MYH6 variants. CONCLUSIONS The present report illustrates the major contribution of whole-exome sequencing (WES) in the characterization of an unusually recurrent fetal disorder and considered the role of WES in the prenatal diagnosis of disorders that do not usually have a genetic etiology.
Collapse
Affiliation(s)
- B Najib
- Department of Obstetrics and Gynecology, Saint Joseph University, Beirut, 0000, Lebanon
- Department of Obstetrics and Antenatal Fetal Medicine, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - T Quibel
- Department of Obstetrics and Antenatal Fetal Medicine, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - A Tessier
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - J Mortreux
- Service de Génétique, Laboratoire Eurofins Biomnis, 69007, Lyon, France
| | - P Bouvagnet
- Service de Génétique, Laboratoire Eurofins Biomnis, 69007, Lyon, France
| | - C Cohen
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
| | - F Vialard
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France
- RHuMA, UMR-BREED, INRA-ENVA-UVSQ, 78180, Montigny Le Bretonneux, France
| | - R Dard
- Department of Genetics, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, 78300, Poissy, France.
- RHuMA, UMR-BREED, INRA-ENVA-UVSQ, 78180, Montigny Le Bretonneux, France.
| |
Collapse
|
4
|
Implementation of Exome Sequencing in Prenatal Diagnostics: Chances and Challenges. Diagnostics (Basel) 2023; 13:diagnostics13050860. [PMID: 36900003 PMCID: PMC10000387 DOI: 10.3390/diagnostics13050860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Whole exome sequencing (WES) has become part of the postnatal diagnostic work-up of both pediatric and adult patients with a range of disorders. In the last years, WES is slowly being implemented in the prenatal setting as well, although some hurdles remain, such as quantity and quality of input material, minimizing turn-around times, and ensuring consistent interpretation and reporting of variants. We present the results of 1 year of prenatal WES in a single genetic center. Twenty-eight fetus-parent trios were analyzed, of which seven (25%) showed a pathogenic or likely pathogenic variant that explained the fetal phenotype. Autosomal recessive (4), de novo (2) and dominantly inherited (1) mutations were detected. Prenatal rapid WES allows for a timely decision-making in the current pregnancy, adequate counseling with the possibility of preimplantation or prenatal genetic testing in future pregnancies and screening of the extended family. With a diagnostic yield in selected cases of 25% and a turn-around time under 4 weeks, rapid WES shows promise for becoming part of pregnancy care in fetuses with ultrasound anomalies in whom chromosomal microarray did not uncover the cause.
Collapse
|
5
|
Van den Veyver IB, Chandler N, Wilkins-Haug L, Wapner RJ, Chitty LS. International Society for Prenatal Diagnosis Updated Position Statement on the use of genome-wide sequencing for prenatal diagnosis. Prenat Diagn 2022; 42:796-803. [PMID: 35583085 PMCID: PMC11220784 DOI: 10.1002/pd.6157] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
The research and clinical use of genome-wide sequencing for prenatal diagnosis of fetuses at risk for genetic disorders have rapidly increased in recent years. Current data indicate that the diagnostic rate is comparable and for certain indications higher than that of standard testing by karyotype and chromosomal microarray. Responsible clinical implementation and diagnostic use of prenatal sequencing depends on standardized laboratory practices and detailed pre-test and post-test counseling. This Updated Position Statement on behalf of the International Society for Prenatal Diagnosis recommends best practices for the clinical use of prenatal exome and genome sequencing from an international perspective. We include several new points for consideration by researchers and clinical service and laboratory providers.
Collapse
Affiliation(s)
- Ignatia B. Van den Veyver
- Departments of Obstetrics and Gynecology and Molecular and Human Genetics, Baylor College of Medicine
- Texas Children’s Hospital, Houston TX 77030, USA
| | - Natalie Chandler
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, WC1N 3JH, UK
| | - Louise Wilkins-Haug
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronald J. Wapner
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY
| | - Lyn S Chitty
- North Thames Genomic Laboratory Hub, Great Ormond Street NHS Foundation Trust, London, WC1N 3JH, UK
- Genetics and Genomics, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| |
Collapse
|