1
|
Bodinier M, Peronnet E, Llitjos JF, Kreitmann L, Brengel-Pesce K, Rimmelé T, Fleurie A, Textoris J, Venet F, Maucort-Boulch D, Monneret G. Integrated clustering of multiple immune marker trajectories reveals different immunotypes in severely injured patients. Crit Care 2024; 28:240. [PMID: 39010113 PMCID: PMC11247757 DOI: 10.1186/s13054-024-04990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The immune response of critically ill patients, such as those with sepsis, severe trauma, or major surgery, is heterogeneous and dynamic, but its characterization and impact on outcomes are poorly understood. Until now, the primary challenge in advancing our understanding of the disease has been to concurrently address both multiparametric and temporal aspects. METHODS We used a clustering method to identify distinct groups of patients, based on various immune marker trajectories during the first week after admission to ICU. In 339 severely injured patients, we initially longitudinally clustered common biomarkers (both soluble and cellular parameters), whose variations are well-established during the immunosuppressive phase of sepsis. We then applied this multi-trajectory clustering using markers composed of whole blood immune-related mRNA. RESULTS We found that both sets of markers revealed two immunotypes, one of which was associated with worse outcomes, such as increased risk of hospital-acquired infection and mortality, and prolonged hospital stays. This immunotype showed signs of both hyperinflammation and immunosuppression, which persisted over time. CONCLUSION Our study suggest that the immune system of critically ill patients can be characterized by two distinct longitudinal immunotypes, one of which included patients with a persistently dysregulated and impaired immune response. This work confirms the relevance of such methodology to stratify patients and pave the way for further studies using markers indicative of potential immunomodulatory drug targets.
Collapse
Affiliation(s)
- Maxime Bodinier
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
| | - Estelle Peronnet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
| | - Jean-François Llitjos
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Anesthesiology and Critical Care Medicine, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003, Lyon, France
| | - Louis Kreitmann
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Karen Brengel-Pesce
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
| | - Thomas Rimmelé
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Anesthesiology and Critical Care Medicine, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003, Lyon, France
| | - Aurore Fleurie
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
| | - Julien Textoris
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Anesthesiology and Critical Care Medicine, Edouard Herriot Hospital, Hospices Civils de Lyon, 69003, Lyon, France
| | - Fabienne Venet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude, Bernard-Lyon 1, Lyon, France
| | - Delphine Maucort-Boulch
- Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Équipe Biostatistique-Santé, Laboratoire de Biométrie Et Biologie Évolutive, CNRS UMR 5558, Villeurbanne, France
- Service de Biostatistique-Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression" (Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux), Joint Research Unit HCL-bioMérieux, Immunology Laboratory and Anesthesia and Critical Care Medicine Department, Hospices Civils de Lyon, Edouard Herriot Hospital, 5 place d'Arsonval, 69003, Lyon Cedex 03, France.
| |
Collapse
|
2
|
Teney C, Poupelin JC, Briot T, Le Bouar M, Fevre C, Brosset S, Martin O, Valour F, Roussel-Gaillard T, Leboucher G, Ader F, Lukaszewicz AC, Ferry T. Phage Therapy in a Burn Patient Colonized with Extensively Drug-Resistant Pseudomonas aeruginosa Responsible for Relapsing Ventilator-Associated Pneumonia and Bacteriemia. Viruses 2024; 16:1080. [PMID: 39066242 PMCID: PMC11281479 DOI: 10.3390/v16071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa is one of the main causes of healthcare-associated infection in Europe that increases patient morbidity and mortality. Multi-resistant pathogens are a major public health issue in burn centers. Mortality increases when the initial antibiotic treatment is inappropriate, especially if the patient is infected with P. aeruginosa strains that are resistant to many antibiotics. Phage therapy is an emerging option to treat severe P. aeruginosa infections. It involves using natural viruses called bacteriophages, which have the ability to infect, replicate, and, theoretically, destroy the P. aeruginosa population in an infected patient. We report here the case of a severely burned patient who experienced relapsing ventilator-associated pneumonia associated with skin graft infection and bacteremia due to extensively drug-resistant P. aeruginosa. The patient was successfully treated with personalized nebulized and intravenous phage therapy in combination with immunostimulation (interferon-γ) and last-resort antimicrobial therapy (imipenem-relebactam).
Collapse
Affiliation(s)
- Cécile Teney
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Jean-Charles Poupelin
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Thomas Briot
- Pharmacie de Centre Hospitalier Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (T.B.); (G.L.)
| | - Myrtille Le Bouar
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
| | - Cindy Fevre
- Phaxiam Therapeutics, 60 Avenue Rockefeller, Bâtiment Bioserra, 69008 Lyon, France;
| | - Sophie Brosset
- Service de Chirurgie Plastique et Reconstructrice, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France;
| | - Olivier Martin
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
| | - Florent Valour
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
| | - Tiphaine Roussel-Gaillard
- Institut des Agents Infectieux, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France;
| | - Gilles Leboucher
- Pharmacie de Centre Hospitalier Nord, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (T.B.); (G.L.)
| | - Florence Ader
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
| | - Anne-Claire Lukaszewicz
- Centre des Grands Brûlés Pierre Colson, Hôpital Edouard Herriot; Lyon, Hospices Civils de Lyon, 69003 Lyon, France; (J.-C.P.); (O.M.); (A.-C.L.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Tristan Ferry
- Service de Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69002 Lyon, France; (M.L.B.); (F.V.); (F.A.)
- Faculty of Medicine, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International d’Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, 46 Allée d’Italie, 69007 Lyon, France
- Education and Clinical Officer of the ESCMID Study Group for Non-Traditional Antibacterial Therapy (ESGNTA), 4051 Basel, Switzerland
| |
Collapse
|
3
|
Tullie S, Nicholson T, Bishop JRB, McGee KC, Asiri A, Sullivan J, Chen YY, Sardeli AV, Belli A, Harrison P, Moiemen NS, Lord JM, Hazeldine J. Severe thermal and major traumatic injury results in elevated plasma concentrations of total heme that are associated with poor clinical outcomes and systemic immune suppression. Front Immunol 2024; 15:1416820. [PMID: 38947312 PMCID: PMC11211257 DOI: 10.3389/fimmu.2024.1416820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Background Traumatic and thermal injuries result in a state of systemic immune suppression, yet the mechanisms that underlie its development are poorly understood. Released from injured muscle and lysed red blood cells, heme is a damage associated molecular pattern with potent immune modulatory properties. Here, we measured plasma concentrations of total heme in over 200 traumatic and thermally-injured patients in order to examine its relationship with clinical outcomes and post-injury immune suppression. Methods Blood samples were collected from 98 burns (≥15% total body surface area) and 147 traumatically-injured (injury severity score ≥8) patients across the ultra-early (≤1 hour) and acute (4-72 hours) post-injury settings. Pro-inflammatory cytokine production by lipopolysaccharide (LPS) challenged whole blood leukocytes was studied, and plasma concentrations of total heme, and its scavengers haptoglobin, hemopexin and albumin measured, alongside the expression of heme-oxygenase-1 (HO-1) in peripheral blood mononuclear cells (PBMCs). LPS-induced tumour necrosis factor-alpha (TNF-α) production by THP-1 cells and monocytes following in vitro heme treatment was also examined. Results Burns and traumatic injury resulted in significantly elevated plasma concentrations of heme, which coincided with reduced levels of hemopexin and albumin, and correlated positively with circulating levels of pro and anti-inflammatory cytokines. PBMCs isolated from trauma patients 4-12 and 48-72 hours post-injury exhibited increased HO-1 gene expression. Non-survivors of burn injury and patients who developed sepsis, presented on day 1 with significantly elevated heme levels, with a difference of 6.5 µM in heme concentrations corresponding to a relative 52% increase in the odds of post-burn mortality. On day 1 post-burn, heme levels were negatively associated with ex vivo LPS-induced TNF-α and interleukin-6 production by whole blood leukocytes. THP-1 cells and monocytes pre-treated with heme exhibited significantly reduced TNF-α production following LPS stimulation. This impairment was associated with decreased gene transcription, reduced activation of extracellular signal-regulated kinase 1/2 and an impaired glycolytic response. Conclusions Major injury results in elevated plasma concentrations of total heme that may contribute to the development of endotoxin tolerance and increase the risk of poor clinical outcomes. Restoration of the heme scavenging system could be a therapeutic approach by which to improve immune function post-injury.
Collapse
Affiliation(s)
- Sebastian Tullie
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan R. B. Bishop
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Kirsty C. McGee
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Ali Asiri
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jack Sullivan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Yung-Yi Chen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Amanda V. Sardeli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- University Hospital Birmingham National Health Service (NHS) Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Naiem S. Moiemen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- University Hospital Birmingham National Health Service (NHS) Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- The Scar Free Foundation Centre for Conflict Wound Research, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Haem Rahimi M, Venet F, Lukaszewicz AC, Peronnet E, Cerrato E, Rimmelé T, Monneret G. Interferon-Gamma-Release assay and absolute CD8 lymphocyte count for acquired immunosuppression monitoring in critically ill patients. Cytokine 2024; 174:156474. [PMID: 38101166 DOI: 10.1016/j.cyto.2023.156474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Guided biomarker-personalized immunotherapy is advancing rapidly as a means to rejuvenate immune function in injured patients who are the most immunosuppressed. A recent study introduced a fully automated interferon-γ release assay (IGRA) for monitoring the functionality of T lymphocytes in patients with septic shock. While a significant decrease in IFN-γ release capacity was observed, a significant correlation with CD8 lymphocyte absolute count was also reported, raising the question of whether ex-vivo IFN-γ production would be only a surrogate marker for lymphocyte count or if these two parameters conveyed distinct and complementary information. In a large cohort of more than 353 critically ill patients following various injuries (sepsis, trauma, major surgery), the primary objective of the present study was to simultaneously evaluate the association between ex vivo IFN-γ release and CD8 cell count with regard to adverse outcome. Our findings provide a clear-cut result, as they distinctly demonstrate that IGRA offers higher-quality information than CD8 count in terms of an independent association with the occurrence of an adverse outcome. These results strengthen the case for incorporating IGRA into the array of biomarkers of interest for defining endotypes in sepsis. This holds especially true given that fully automated tests are now readily available and could be used in routine clinical practice.
Collapse
Affiliation(s)
- Muzhda Haem Rahimi
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France; Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France; NLRP3 Inflammation and Immune Response to Sepsis Team, Centre International de Recherche in Infectiology (CIRI), Inserm U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Claude Bernard University Lyon 1, Lyon, France
| | - Anne-Claire Lukaszewicz
- Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France; Hospices Civils de Lyon, Anesthesiology and Critical Care Medicine Department, Hôpital E. Herriot, Lyon, France
| | - Estelle Peronnet
- Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France; Open Innovation & Partnerships, bioMérieux S.A., Marcy l'Etoile, France
| | - Elisabeth Cerrato
- Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France; Open Innovation & Partnerships, bioMérieux S.A., Marcy l'Etoile, France
| | - Thomas Rimmelé
- Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France; Hospices Civils de Lyon, Anesthesiology and Critical Care Medicine Department, Hôpital E. Herriot, Lyon, France
| | - Guillaume Monneret
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France; Université de Lyon, EA 7426 "Pathophysiology of Injury-Induced Immunosuppression", Université Claude Bernard Lyon_1, Lyon, France.
| |
Collapse
|
5
|
Barrios EL, Mazer MB, McGonagill PW, Bergmann CB, Goodman MD, Gould RW, Rao M, Polcz VE, Davis RJ, Del Toro DE, Dirain ML, Dram A, Hale LO, Heidarian M, Kim CY, Kucaba TA, Lanz JP, McCray AE, Meszaros S, Miles S, Nelson CR, Rocha IL, Silva EE, Ungaro RF, Walton AH, Xu J, Zeumer-Spataro L, Drewry AM, Liang M, Bible LE, Loftus TJ, Turnbull IR, Efron PA, Remy KE, Brakenridge SC, Badovinac VP, Griffith TS, Moldawer LL, Hotchkiss RS, Caldwell CC. Adverse outcomes and an immunosuppressed endotype in septic patients with reduced IFN-γ ELISpot. JCI Insight 2024; 9:e175785. [PMID: 38100268 PMCID: PMC10906237 DOI: 10.1172/jci.insight.175785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUNDSepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients generally relies on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision.METHODSAn ex vivo whole-blood enzyme-linked immunosorbent spot (ELISpot) assay for cellular production of interferon γ (IFN-γ) was evaluated in 107 septic and 68 nonseptic patients from 5 academic health centers using blood samples collected on days 1, 4, and 7 following ICU admission.RESULTSCompared with 46 healthy participants, unstimulated and stimulated whole-blood IFN-γ expression was either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole-blood IFN-γ expression was significantly reduced on ICU days 1, 4, and 7 (all P < 0.05), due to both significant reductions in total number of IFN-γ-producing cells and amount of IFN-γ produced per cell (all P < 0.05). Importantly, IFN-γ total expression on days 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6, and procalcitonin. Septic patients with low IFN-γ expression were older and had lower ALCs and higher soluble PD-L1 and IL-10 concentrations, consistent with an immunosuppressed endotype.CONCLUSIONSA whole-blood IFN-γ ELISpot assay can both identify septic patients at increased risk of late mortality and identify immunosuppressed septic patients.TRIAL REGISTRYN/A.FUNDINGThis prospective, observational, multicenter clinical study was directly supported by National Institute of General Medical Sciences grant R01 GM-139046, including a supplement (R01 GM-139046-03S1) from 2022 to 2024.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Monty B. Mazer
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Patrick W. McGonagill
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Christian B. Bergmann
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- University Hospital Ulm, Clinic for Trauma Surgery, Hand, Plastic, and Reconstructive Surgery Albert-Einstein-Allee 23, Ulm, Germany
| | - Michael D. Goodman
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert W. Gould
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mahil Rao
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ruth J. Davis
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Drew E. Del Toro
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marvin L.S. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Alexandra Dram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucas O. Hale
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mohammad Heidarian
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Caleb Y. Kim
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Tamara A. Kucaba
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jennifer P. Lanz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ashley E. McCray
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Sandra Meszaros
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sydney Miles
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Candace R. Nelson
- Department of Anesthesiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ivanna L. Rocha
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Elvia E. Silva
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ricardo F. Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Andrew H. Walton
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julie Xu
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Leilani Zeumer-Spataro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Anne M. Drewry
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muxuan Liang
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida College of Public Health and Health Professions and the University of Florida College of Medicine, Gainesville, Florida, USA
| | - Letitia E. Bible
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Isaiah R. Turnbull
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kenneth E. Remy
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Scott C. Brakenridge
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vladimir P. Badovinac
- Interdisciplinary Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Experimental Pathology PhD Program, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Minneapolis VA Healthcare System, Minneapolis, Minnesota, USA
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles C. Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Vacheron CH, Lepape A, Venet F, Monneret G, Gueyffier F, Boutitie F, Vallin H, Schwebel C, Maucort-Boulch D, Friggeri A. Granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients presenting sepsis-induced immunosuppression: The GRID randomized controlled trial. J Crit Care 2023; 78:154330. [PMID: 37267804 DOI: 10.1016/j.jcrc.2023.154330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Septic shock is associated in some patients with a profound immunosuppression. We hypothesized that GM-CSF would reduce the occurrence of ICU-acquired infections in immunosuppressed septic patients. METHODS Randomized double-blind trial conducted between 2015 and 2018. Adult patients, admitted to ICU, with severe sepsis or septic shock presenting with sepsis-induced immunosuppression defined by mHLA-DR < 8000 ABC (antibodies bound per cell) at day 3 were included. Patients were randomized to receive GM-CSF 125 μg/m2 or placebo for 5 days at a 1:1 ratio. The primary outcome was the difference in the number of patients presenting≥1 ICU-acquired infection at day 28 or ICU discharge. RESULTS The study was prematurely stopped because of insufficient recruitment. A total of 98 patients were included, 54 in the intervention group and 44 in the placebo group. The two groups were similar except for a higher body mass index and McCabe score in the intervention group. No significant difference was observed between groups regarding ICU-acquired infection (11% vs 11%, p = 1.000), 28-day mortality (24% vs 27%,p = 0.900), or the number or localization of the ICU infections. CONCLUSION GM-CSF had no effect on the prevention of ICU-acquired infection in sepsis immunosuppression, but any conclusion is limited by the early termination of the study leading to low number of included patients.
Collapse
Affiliation(s)
- Charles-Hervé Vacheron
- Département d'Anesthésie Réanimation, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France; CIRI-Centre International de Recherche en Infectiologie (Team PHE3ID), Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, Lyon 69007, France; Université Lyon 1.
| | - Alain Lepape
- Département d'Anesthésie Réanimation, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France; REA REZO Infections & Antibiorésistance en Réanimation, Hôpital Henry Gabrielle, Villa Alice, 20 route de Vourles, Saint Genis-Laval 69 230, France; CIRI-Centre International de Recherche en Infectiologie (Team PHE3ID), Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, Lyon 69007, France.
| | - Fabienne Venet
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 5 place d'Arsonval, Lyon 69437 CEDEX 03, France; CIRI, Centre International de Recherche en Infectiologie 5team NLRP3-Sepsis), Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France.
| | - Guillaume Monneret
- Laboratoire d'Immunologie, Hôpital E. Herriot Hospices, Civils de Lyon, Lyon, France; EA7426 - Université Lyon 1, Lyon, France.
| | - Francois Gueyffier
- Hospices Civils de Lyon, Pôle de Santé Publique, Lyon F-69003, France; CNRS et Université Lyon 1, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne F-69100, France.
| | - Florent Boutitie
- Hospices Civils de Lyon, Service de Biostatistique, Lyon F-69003, France; Université Lyon 1, Villeurbanne F-69100, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne F-69100, France.
| | - Helene Vallin
- Hospices civiles de lyon, 3 Quai des Célestins, Lyon, FranceUniversité Lyon 1 8 Av. Rockefeller, Lyon, France.
| | - Carole Schwebel
- Service de Médecine Intensive-Réanimation, CHU Grenoble Alpes, La Tronche 38700, France; Université Grenoble-Alpes, U 1039 Radiopharmaceutiques Biocliniques, La Tronche 38700, France.
| | - Delphine Maucort-Boulch
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon F-69003, France; Université Lyon 1, Villeurbanne F-69100, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne F-69100, France.
| | - Arnaud Friggeri
- Département d'Anesthésie Réanimation, Centre Hospitalier Lyon Sud Hospices Civils de Lyon, Pierre-Bénite, France; CIRI-Centre International de Recherche en Infectiologie (Team PHE3ID), Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, Lyon 69007, France.
| |
Collapse
|
7
|
Layios N, Gosset C, Maes N, Delierneux C, Hego A, Huart J, Lecut C, Damas P, Oury C, Gothot A. Prospective flow cytometry analysis of leucocyte subsets in critically ill patients who develop sepsis: a pilot study. Infection 2023; 51:1305-1317. [PMID: 36696043 DOI: 10.1007/s15010-023-01983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE Sepsis in critically ill patients with injury bears a high morbidity and mortality. Extensive phenotypic monitoring of leucocyte subsets in critically ill patients at ICU admission and during sepsis development is still scarce. The main objective of this study was to identify early changes in leukocyte phenotype which would correlate with later development of sepsis. METHODS Patients who were admitted in a tertiary ICU for organ support after severe injury (elective cardiac surgery, trauma, necessity of prolonged ventilation or stroke) were sampled on admission (T1) and 48-72 h later (T2) for phenotyping of leukocyte subsets by flow cytometry and cytokines measurements. Those who developed secondary sepsis or septic shock were sampled again on the day of sepsis diagnosis (Tx). RESULTS Ninety-nine patients were included in the final analysis. Nineteen (19.2%) patients developed secondary sepsis or septic shock. They presented significantly higher absolute monocyte counts and CRP at T1 compared to non-septic patients (1030/µl versus 550/µl, p = 0.013 and 5.1 mg/ml versus 2.5 mg/ml, p = 0.046, respectively). They also presented elevated levels of monocytes with low expression of L-selectin (CD62Lneg monocytes) (OR[95%CI] 4.5 (1.4-14.5), p = 0.01) and higher SOFA score (p < 0.0001) at T1 and low mHLA-DR at T2 (OR[95%CI] 0.003 (0.00-0.17), p = 0.049). Stepwise logistic regression analysis showed that both monocyte markers and high SOFA score (> 8) were independently associated with nosocomial sepsis occurrence. No other leucocyte count or surface marker nor any cytokine measurement correlated with sepsis occurrence. CONCLUSION Monocyte counts and change of phenotype are associated with secondary sepsis occurrence in critically ill patients with injury.
Collapse
Affiliation(s)
- Nathalie Layios
- Department of Intensive Care, University Hospital of Liege, Domaine universitaire du Sart-Tilman, 4000, Liege, Belgium.
- Laboratory of Cardiology, GIGA Institute, University Hospital of Liege, Liege, Belgium.
| | - Christian Gosset
- Department of Hematobiology and Immuno-Hematology, University Hospital of Liege, Liege, Belgium
| | - Nathalie Maes
- Biostatistics and Research Method Center, University Hospital of Liege, Liege, Belgium
| | - Céline Delierneux
- Laboratory of Cardiology, GIGA Institute, University Hospital of Liege, Liege, Belgium
| | - Alexandre Hego
- Laboratory of Thrombosis and Hemostasis, GIGA-Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - Justine Huart
- Department of Nephrology, University Hospital of Liege, Liege, Belgium
- Laboratory of Translational Research in Nephrology, GIGA, University Hospital of Liege, Liege, Belgium
| | - Christelle Lecut
- Department of Hematobiology and Immuno-Hematology, University Hospital of Liege, Liege, Belgium
| | - Pierre Damas
- Department of Intensive Care, University Hospital of Liege, Domaine universitaire du Sart-Tilman, 4000, Liege, Belgium
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Institute, University Hospital of Liege, Liege, Belgium
| | - André Gothot
- Department of Hematobiology and Immuno-Hematology, University Hospital of Liege, Liege, Belgium
| |
Collapse
|
8
|
Barrios EA, Mazer MB, McGonagill P, Bergmann CB, Goodman MD, Gould R, Rao M, Polcz V, Davis R, Del Toro D, Dirain M, Dram A, Hale L, Heidarian M, Kucaba TA, Lanz JP, McCray A, Meszaros S, Miles S, Nelson C, Rocha I, Silva EE, Ungaro R, Walton A, Xu J, Zeumer-Spataro L, Drewry A, Liang M, Bible LE, Loftus T, Turnbull I, Efron PA, Remy KE, Brakenridge S, Badovinac VP, Griffith TS, Moldawer LL, Hotchkiss RS, Caldwell CC. Adverse Long-Term Outcomes and an Immune Suppressed Endotype in Sepsis Patients with Reduced Interferon-γELISpot: A Multicenter, Prospective Observational Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.13.23295360. [PMID: 37745385 PMCID: PMC10516075 DOI: 10.1101/2023.09.13.23295360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Sepsis remains a major clinical challenge for which successful treatment requires greater precision in identifying patients at increased risk of adverse outcomes requiring different therapeutic approaches. Predicting clinical outcomes and immunological endotyping of septic patients has generally relied on using blood protein or mRNA biomarkers, or static cell phenotyping. Here, we sought to determine whether functional immune responsiveness would yield improved precision. METHODS An ex vivo whole blood enzyme-linked immunosorbent (ELISpot) assay for cellular production of interferon-γ (IFN-γ) was evaluated in 107 septic and 68 non-septic patients from five academic health centers using blood samples collected on days 1, 4 and 7 following ICU admission. RESULTS Compared with 46 healthy subjects, unstimulated and stimulated whole blood IFNγ expression were either increased or unchanged, respectively, in septic and nonseptic ICU patients. However, in septic patients who did not survive 180 days, stimulated whole blood IFNγ expression was significantly reduced on ICU days 1, 4 and 7 (all p<0.05), due to both significant reductions in total number of IFNγ producing cells and amount of IFNγ produced per cell (all p<0.05). Importantly, IFNγ total expression on day 1 and 4 after admission could discriminate 180-day mortality better than absolute lymphocyte count (ALC), IL-6 and procalcitonin. Septic patients with low IFNγ expression were older and had lower ALC and higher sPD-L1 and IL-10 concentrations, consistent with an immune suppressed endotype. CONCLUSIONS A whole blood IFNγ ELISpot assay can both identify septic patients at increased risk of late mortality, and identify immune-suppressed, sepsis patients.
Collapse
|
9
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Joshi I, Carney WP, Rock EP. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol 2023; 14:1130214. [PMID: 36825018 PMCID: PMC9942705 DOI: 10.3389/fimmu.2023.1130214] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.
Collapse
Affiliation(s)
- Ila Joshi
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States,*Correspondence: Ila Joshi,
| | - Walter P. Carney
- Walt Carney Biomarkers Consulting, LLC., North Andover, MA, United States
| | - Edwin P. Rock
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States
| |
Collapse
|