1
|
Eom JA, Jeong JJ, Han SH, Kwon GH, Lee KJ, Gupta H, Sharma SP, Won SM, Oh KK, Yoon SJ, Joung HC, Kim KH, Kim DJ, Suk KT. Gut-microbiota prompt activation of natural killer cell on alcoholic liver disease. Gut Microbes 2023; 15:2281014. [PMID: 37988132 PMCID: PMC10730232 DOI: 10.1080/19490976.2023.2281014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
The liver is rich in innate immune cells, such as natural killer (NK) cells, natural killer T cells, and Kupffer cells associated with the gut microbiome. These immune cells are dysfunctional owing to alcohol consumption. However, there is insufficient data on the association between immune cells and gut microbiome in alcoholic liver disease (ALD). Therefore, the purpose of this study was to evaluate the effects of probiotic strains on NK cells in ALD patients. In total, 125 human blood samples [control (n = 22), alcoholic hepatitis (n = 43), and alcoholic cirrhosis (n = 60]) were collected for flow cytometric analysis. C57BL/6J mice were divided into four groups (normal, EtOH-fed, and 2 EtOH+strain groups [Phocaeicola dorei and Lactobacillus helveticus]). Lymphocytes isolated from mouse livers were analyzed using flow cytometry. The frequency of NK cells increased in patients with alcoholic hepatitis and decreased in patients with alcoholic cirrhosis. The expression of NKp46, an NK cell-activating receptor, was decreased in patients with alcoholic hepatitis and increased in patients with alcoholic cirrhosis compared to that in the control group. The number of cytotoxic CD56dimCD16+ NK cells was significantly reduced in patients with alcoholic cirrhosis. We tested the effect of oral administration P. dorei and L. helveticus in EtOH-fed mice. P. dorei and L. helveticus improved liver inflammation and intestinal barrier damage caused by EtOH supply and increased NK cell activity. Therefore, these observations suggest that the gut microbiome may ameliorate ALD by regulating immune cells.
Collapse
Affiliation(s)
- Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Goo Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Kyeong Jin Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Zurera-Egea C, Teniente-Serra A, Fuster D, Martínez-Cáceres E, Muga R, Zuluaga P. Cytotoxic NK cells phenotype and activated lymphocytes are the main characteristics of patients with alcohol-associated liver disease. Clin Exp Med 2023; 23:3539-3547. [PMID: 37392250 PMCID: PMC10618338 DOI: 10.1007/s10238-023-01121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
T cells, natural killer (NK) and NKT cells have opposing actions in the development of alcohol-associated liver fibrosis. We aimed to evaluate the phenotype of NK cells, NKT cells and activated T cells in patients with alcohol use disorder (AUD) according to the presence of advanced liver fibrosis (ALF). Totally, 79 patients (51-years, 71% males) were admitted to treatment of AUD. ALF was defined as FIB4-score > 2.67. Immunophenotyping of NK cells (CD3-CD56+CD16+, CD3-CD56+CD16-, CD3-CD56-CD16+), NKT-like (CD3+CD56+), and the activation status of CD4+, CD8+ and regulatory T cells (Tregs) were evaluated according to the HLA-DR expression. Patients had an AUD duration of 18 ± 11 years with a daily alcohol consumption of 155 ± 77 gr/day prior to hospital admission. The values of absolute cells were 2 ± 0.9 cells/L for total lymphocytes, 1054 ± 501 cells/µL for CD4+, 540 ± 335 cells/µL for CD8+, 49.3 ± 24.8 cells/µL for Tregs, 150.3 ± 97.5 cells/µL for NK cells and 69.8 ± 78.3 cells/µL for NKT-like. The percentage of total NK cells (11.3 ± 5.5% vs. 7 ± 4.3%, p < 0.01), CD3-CD56+CD16+ regarding total lymphocytes (9.7 ± 5.1% vs. 5.8 ± 3.9%, p < 0.01), activated CD4+ cells (5.2 ± 3.2% vs. 3.9 ± 3%, p = 0.04) and activated CD8+ cells (15.7 ± 9.1% vs. 12.2 ± 9%, p = 0.05) were significantly higher in patients with ALF. The percentage of CD3-CD56+CD16- regarding NK cells (5.1 ± 3.4% vs. 7.6 ± 6.2%, p = 0.03) was significantly lower in patients with ALF. Activated Tregs (39.9 ± 11.5 vs. 32.4 ± 9.2, p = 0.06) showed a tendency to be higher in patients with ALF. The proportion of activated CD4+ cells (r = 0.40, p < 0.01) and activated CD8+ cells (r = 0.51, p < 0.01) was correlated with the proportion of NKT-like in patients without ALF. Patients with ALF presented an increased NK cytotoxic phenotype and activated T cells concomitant with a decreased NK cytokine-secreting phenotype.
Collapse
Affiliation(s)
- Coral Zurera-Egea
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Departament de Biologia Cel·lular Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Aina Teniente-Serra
- Department of Inmunology, Hospital Universitari Germans Trias I Pujol, IGTP, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Fuster
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Internal Medicine, Hospital Universitari Germans Trias I Pujol, IGTP, Ctra. Canyet S/N, 08916, Badalona, Barcelona, Spain
| | - Eva Martínez-Cáceres
- Department of Inmunology, Hospital Universitari Germans Trias I Pujol, IGTP, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Muga
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Internal Medicine, Hospital Universitari Germans Trias I Pujol, IGTP, Ctra. Canyet S/N, 08916, Badalona, Barcelona, Spain
| | - Paola Zuluaga
- Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Internal Medicine, Hospital Universitari Germans Trias I Pujol, IGTP, Ctra. Canyet S/N, 08916, Badalona, Barcelona, Spain.
| |
Collapse
|
3
|
Shalchi-Amirkhiz P, Bensch T, Proschmann U, Stock AK, Ziemssen T, Akgün K. Pilot study on the influence of acute alcohol exposure on biophysical parameters of leukocytes. Front Mol Biosci 2023; 10:1243155. [PMID: 37614440 PMCID: PMC10442941 DOI: 10.3389/fmolb.2023.1243155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Objective: This pilot study explores the influence of acute alcohol exposure on cell mechanical properties of steady-state and activated leukocytes conducted with real-time deformability cytometry. Methods: Nineteen healthy male volunteers were enrolled to investigate the effect of binge drinking on biophysical properties and cell counts of peripheral blood leukocytes. Each participant consumed an individualized amount of alcohol to achieve a blood alcohol concentration of 1.2 ‰ as a mean peak. In addition, we also incubated whole blood samples from healthy donors with various ethanol concentrations and performed stimulation experiments using lipopolysaccharide and CytoStim™ in the presence of ethanol. Results: Our findings indicate that the biophysical properties of steady-state leukocytes are not significantly affected by a single episode of binge drinking within the first two hours. However, we observed significant alterations in relative cell counts and a shift toward a memory T cell phenotype. Moreover, exposure to ethanol during stimulation appears to inhibit the cytoskeleton reorganization of monocytes, as evidenced by a hindered increase in cell deformability. Conclusion: Our observations indicate the promising potential of cell mechanical analysis in understanding the influence of ethanol on immune cell functions. Nevertheless, additional investigations in this field are warranted to validate biophysical properties as biomarkers or prognostic indicators for alcohol-related changes in the immune system.
Collapse
Affiliation(s)
- Puya Shalchi-Amirkhiz
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Tristan Bensch
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Undine Proschmann
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Biopsychology, Department of Psychology, School of Science, TU Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- Multiple Sclerosis Center, Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
4
|
Yang M, Vanderwert E, Kimchi ET, Staveley-O'Carroll KF, Li G. The Important Roles of Natural Killer Cells in Liver Fibrosis. Biomedicines 2023; 11:biomedicines11051391. [PMID: 37239062 DOI: 10.3390/biomedicines11051391] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis accompanies the development of various chronic liver diseases and promotes their progression. It is characterized by the abnormal accumulation of extracellular matrix proteins (ECM) and impaired ECM degradation. Activated hepatic stellate cells (HSCs) are the major cellular source of ECM-producing myofibroblasts. If liver fibrosis is uncontrolled, it may lead to cirrhosis and even liver cancer, primarily hepatocellular carcinoma (HCC). Natural killer (NK) cells are a key component of innate immunity and have miscellaneous roles in liver health and disease. Accumulating evidence shows that NK cells play dual roles in the development and progression of liver fibrosis, including profibrotic and anti-fibrotic functions. Regulating NK cells can suppress the activation of HSCs and improve their cytotoxicity against activated HSCs or myofibroblasts to reverse liver fibrosis. Cells such as regulatory T cells (Tregs) and molecules such as prostaglandin E receptor 3 (EP3) can regulate the cytotoxic function of NK cells. In addition, treatments such as alcohol dehydrogenase 3 (ADH3) inhibitors, microRNAs, natural killer group 2, member D (NKG2D) activators, and natural products can enhance NK cell function to inhibit liver fibrosis. In this review, we summarized the cellular and molecular factors that affect the interaction of NK cells with HSCs, as well as the treatments that regulate NK cell function against liver fibrosis. Despite a lot of information about NK cells and their interaction with HSCs, our current knowledge is still insufficient to explain the complex crosstalk between these cells and hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, B cells, and T cells, as well as thrombocytes, regarding the development and progression of liver fibrosis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Ethan Vanderwert
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| |
Collapse
|
5
|
Francque SMA. Editorial: differences in altered duodenal T-cell immunology in alcoholic liver damage versus NAFLD. Aliment Pharmacol Ther 2022; 56:1501-1502. [PMID: 36271476 DOI: 10.1111/apt.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Sven M A Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Edegem, Belgium.,InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER)
| |
Collapse
|
6
|
Gu X, Chu Q, Ma X, Wang J, Chen C, Guan J, Ren Y, Wu S, Zhu H. New insights into iNKT cells and their roles in liver diseases. Front Immunol 2022; 13:1035950. [PMID: 36389715 PMCID: PMC9643775 DOI: 10.3389/fimmu.2022.1035950] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Natural killer T cells (NKTs) are an important part of the immune system. Since their discovery in the 1990s, researchers have gained deeper insights into the physiology and functions of these cells in many liver diseases. NKT cells are divided into two subsets, type I and type II. Type I NKT cells are also named iNKT cells as they express a semi-invariant T cell-receptor (TCR) α chain. As part of the innate immune system, hepatic iNKT cells interact with hepatocytes, macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-to-cell contact and cytokine secretion, bridging the innate and adaptive immune systems. A better understanding of hepatic iNKT cells is necessary for finding new methods of treating liver disease including autoimmune liver diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated, how they interact with other cells, and how they function in the presence of liver disease.
Collapse
Affiliation(s)
- Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Ma
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Guan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Yuan M, Hu X, Yao L, Liu P, Jiang Y, Li L. Comprehensive bioinformatics and machine learning analysis identify VCAN as a novel biomarker of hepatitis B virus-related liver fibrosis. Front Mol Biosci 2022; 9:1010160. [PMID: 36275632 PMCID: PMC9585216 DOI: 10.3389/fmolb.2022.1010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains the leading cause of liver fibrosis (LF) worldwide, especially in China. Identification of decisive diagnostic biomarkers for HBV-associated liver fibrosis (HBV-LF) is required to prevent chronic hepatitis B (CHB) from progressing to liver cancer and to more effectively select the best treatment strategy. We obtained 43 samples from CHB patients without LF and 81 samples from CHB patients with LF (GSE84044 dataset). Among these, 173 differentially expressed genes (DEGs) were identified. Functional analysis revealed that these DEGs predominantly participated in immune-, extracellular matrix-, and metabolism-related processes. Subsequently, we integrated four algorithms (LASSO regression, SVM-RFE, RF, and WGCNA) to determine diagnostic biomarkers for HBV-LF. These analyses and receive operating characteristic curves identified the genes for phosphatidic acid phosphatase type 2C (PPAP2C) and versican (VCAN) as potentially valuable diagnostic biomarkers for HBV-LF. Single-sample gene set enrichment analysis (ssGSEA) further confirmed the immune landscape of HBV-LF. The two diagnostic biomarkers also significantly correlated with infiltrating immune cells. The potential regulatory mechanisms of VCAN underlying the occurrence and development of HBV-LF were also analyzed. These collective findings implicate VCAN as a novel diagnostic biomarker for HBV-LF, and infiltration of immune cells may critically contribute to the occurrence and development of HBV-LF.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pingji Liu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Lanjuan Li, ; Yingan Jiang,
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Lanjuan Li, ; Yingan Jiang,
| |
Collapse
|