1
|
Lilley T, Camera DM, Kwa FAA. Repairing muscle with broccoli-derived sulforaphane: A preclinical evaluation for the treatment of mitochondrial myopathies. Drug Discov Today 2024; 30:104283. [PMID: 39736463 DOI: 10.1016/j.drudis.2024.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Skeletal muscle health relies on the production of adenosine triphosphate (ATP) in the mitochondria. ATP production is accompanied by oxidative phosphorylation, which generates reactive oxygen species (ROS). When there is an imbalance in ROS levels, oxidative stress and subsequent mitochondrial dysfunction, mitochondrial myopathies including sarcopenia, chronic progressive external ophthalmoplegia, and proximal myopathy can result. Such incurable myopathies are characterised by aberrant metabolism, limited ATP production, and muscle atrophy. Broccoli-derived sulforaphane has emerged as a novel treatment for mitochondrial myopathies because of its antioxidant and anti-inflammatory properties. This review discusses preclinical models that reveal sulforaphane's potential therapeutic benefits and limitations in treating mitochondrial myopathies.
Collapse
Affiliation(s)
- Thomas Lilley
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Australia
| | - Donny M Camera
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Australia
| | - Faith A A Kwa
- Department of Health Sciences and Biostatistics, Swinburne University of Technology, Melbourne, Australia.
| |
Collapse
|
2
|
Deng H, Zhang Q, Yi J, Yuan L. Unraveling ptosis: a comprehensive review of clinical manifestations, genetics, and treatment. Prog Retin Eye Res 2024:101327. [PMID: 39725023 DOI: 10.1016/j.preteyeres.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Ptosis is defined as an abnormally low-lying upper eyelid margin on the primary gaze, generally resulting from a congenital or acquired abnormality of the nerves or muscles that control the eyelid. Ptosis can occur alone or concurrently as an ocular or systemic syndrome, and the prevalence of ptosis varies among different countries and populations. Isolated ptosis typically causes aesthetic problems in patients and can lead to functional ophthalmic problems in severe cases. In individuals with syndromic ptosis, ptosis can be a warning of serious medical problems. There are different approaches to classification, depending on the onset time or the etiology of ptosis, and the clinical characteristics of congenital and acquired ptosis also differ. Pedigree and genetic analysis have demonstrated that hereditary ptosis is clinically heterogeneous, with incomplete concordance and variable expressivity. A number of genetic loci and genes responsible for hereditary isolated and syndromic ptosis have been reported. Optimal surgical timing and proper method are truly critical for avoiding the risk of potentially severe outcomes from ptosis and minimizing surgical complications, which are challenging as the pathogenesis is still indistinct and the anatomy is complex. This review provides a comprehensive review of ptosis, by summarizing the clinical manifestations, classification, diagnosis, genetics, treatment, and prognosis, as well as the bound anatomy of upper eyelid.
Collapse
Affiliation(s)
- Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Research Center of Medical Experimental Technology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Disease Genome Research Center, Central South University, Changsha 410013, China; Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Qianling Zhang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Junhui Yi
- Department of Ophthalmology, the Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Research Center of Medical Experimental Technology, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha 410013, China; Disease Genome Research Center, Central South University, Changsha 410013, China.
| |
Collapse
|
3
|
Lancaster M, Hafen P, Law A, Matias C, Meyer T, Fischer K, Miller M, Hao C, Gillespie P, McKinzie D, Brault J, Graham B. Sucla2 Knock-Out in Skeletal Muscle Yields Mouse Model of Mitochondrial Myopathy With Muscle Type-Specific Phenotypes. J Cachexia Sarcopenia Muscle 2024; 15:2729-2742. [PMID: 39482887 PMCID: PMC11634519 DOI: 10.1002/jcsm.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Pathogenic variants in subunits of succinyl-CoA synthetase (SCS) are associated with mitochondrial encephalomyopathy in humans. SCS catalyses the conversion of succinyl-CoA to succinate coupled with substrate-level phosphorylation of either ADP or GDP in the TCA cycle. This report presents a muscle-specific conditional knock-out (KO) mouse model of Sucla2, the ADP-specific beta subunit of SCS, generating a novel in vivo model of mitochondrial myopathy. METHODS The mouse model was generated using the Cre-Lox system, with the human skeletal actin (HSA) promoter driving Cre-recombination of a CRISPR-Cas9-generated Sucla2 floxed allele within skeletal muscle. Inactivation of Sucla2 was validated using RT-qPCR and western blot, and both enzyme activity and serum metabolites were quantified by mass spectrometry. To characterize the model in vivo, whole-body phenotyping was conducted, with mice undergoing a panel of strength and locomotor behavioural assays. Additionally, ex vivo contractility experiments were performed on the soleus (SOL) and extensor digitorum longus (EDL) muscles. SOL and EDL cryosections were also subject to imaging analyses to assess muscle fibre-specific phenotypes. RESULTS Molecular validation confirmed 68% reduction of Sucla2 transcript within the mutant skeletal muscle (p < 0.001) and 95% functionally reduced SUCLA2 protein (p < 0.0001). By 3 weeks of age, Sucla2 KO mice were 44% the size of controls by body weight (p < 0.0001). Mutant mice also exhibited 34%-40% reduced grip strength (p < 0.01) and reduced spontaneous exercise, spending about 88% less cumulative time on a running wheel (p < 0.0001). Contractile function was also perturbed in a muscle-specific manner; although no genotype-specific deficiencies were seen in EDL function, SUCLA2-deficient SOL muscles generated 40% less specific tetanic force (p < 0.0001), alongside slower contraction and relaxation rates (p < 0.001). Similarly, a SOL-specific threefold increase in mitochondria (p < 0.0001) was observed, with qualitatively increased staining for both COX and SDH, and the proportion of Type 1 myosin heavy chain expressing fibres within the SOL was nearly doubled (95% increase, p < 0.0001) in the Sucla2 KO mice compared with that in controls. CONCLUSIONS SUCLA2 loss within murine skeletal muscle yields a model of SCS-deficient mitochondrial myopathy with reduced body weight, muscle weakness and exercise intolerance. Physiological and morphological analyses of hindlimb muscles showed remarkable differences in ex vivo function and cellular consequences between the EDL and SOL muscles, with SOL muscles significantly more impacted by Sucla2 inactivation. This novel model will provide an invaluable tool for investigations of muscle-specific and fibre type-specific pathogenic mechanisms to better understand SCS-deficient myopathy.
Collapse
Affiliation(s)
- Makayla S. Lancaster
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Paul Hafen
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Division of ScienceIndiana University ColumbusColumbusIndianaUSA
| | - Andrew S. Law
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Catalina Matias
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Timothy Meyer
- Behavioral Phenotyping CoreIndiana University School of MedicineIndianapolisIndianaUSA
| | - Kathryn Fischer
- Behavioral Phenotyping CoreIndiana University School of MedicineIndianapolisIndianaUSA
| | - Marcus Miller
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Chunhai Hao
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Patrick Gillespie
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - David McKinzie
- Behavioral Phenotyping CoreIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology, & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Brett H. Graham
- Department of Medical & Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
4
|
Gospodaryov DV. Alternative NADH dehydrogenase: A complex I backup, a drug target, and a tool for mitochondrial gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149529. [PMID: 39615731 DOI: 10.1016/j.bbabio.2024.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Alternative NADH dehydrogenase, also known as type II NADH dehydrogenase (NDH-2), catalyzes the same redox reaction as mitochondrial respiratory chain complex I. Specifically, it oxidizes reduced nicotinamide adenine dinucleotide (NADH) while simultaneously reducing ubiquinone to ubiquinol. However, unlike complex I, this enzyme is non-proton pumping, comprises of a single subunit, and is resistant to rotenone. Initially identified in bacteria, fungi and plants, NDH-2 was subsequently discovered in protists and certain animal taxa including sea squirts. The gene coding for NDH-2 is also present in the genomes of some annelids, tardigrades, and crustaceans. For over two decades, NDH-2 has been investigated as a potential substitute for defective complex I. In model organisms, NDH-2 has been shown to ameliorate a broad spectrum of conditions associated with complex I malfunction, including symptoms of Parkinson's disease. Recently, lifespan extension has been observed in animals expressing NDH-2 in a heterologous manner. A variety of mechanisms have been put forward by which NDH-2 may extend lifespan. Such mechanisms include the activation of pro-longevity pathways through modulation of the NAD+/NADH ratio, decreasing production of reactive oxygen species (ROS) in mitochondria, or then through moderate increases in ROS production followed by activation of defense pathways (mitohormesis). This review gives an overview of the latest research on NDH-2, including the structural peculiarities of NDH-2, its inhibitors, its role in the pathogenicity of mycobacteria and apicomplexan parasites, and its function in bacteria, fungi, and animals.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenka, 76018, Ivano-Frankivsk, Ukraine.
| |
Collapse
|
5
|
Beecher G, Gavrilova RH, Mandrekar J, Naddaf E. Mitochondrial myopathies diagnosed in adulthood: clinico-genetic spectrum and long-term outcomes. Brain Commun 2024; 6:fcae041. [PMID: 38434220 PMCID: PMC10906953 DOI: 10.1093/braincomms/fcae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondrial myopathies are frequently recognized in childhood as part of a broader multisystem disorder and often overlooked in adulthood. Herein, we describe the phenotypic and genotypic spectrum and long-term outcomes of mitochondrial myopathies diagnosed in adulthood, focusing on neuromuscular features, electrodiagnostic and myopathological findings and survival. We performed a retrospective chart review of adult patients diagnosed with mitochondrial myopathy at Mayo Clinic (2005-21). We identified 94 patients. Median time from symptom onset to diagnosis was 11 years (interquartile range 4-21 years). Median age at diagnosis was 48 years (32-63 years). Primary genetic defects were identified in mitochondrial DNA in 48 patients (10 with single large deletion, 38 with point mutations) and nuclear DNA in 29. Five patients had multiple mitochondrial DNA deletions or depletion without nuclear DNA variants. Twelve patients had histopathological features of mitochondrial myopathy without molecular diagnosis. The most common phenotypes included multisystem disorder (n = 30); mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (14); limb myopathy (13); chronic progressive external ophthalmoplegia (12); and chronic progressive external ophthalmoplegia-plus (12). Isolated skeletal muscle manifestations occurred in 27%. Sixty-nine per cent had CNS and 21% had cardiac involvement. Mutations most frequently involved MT-TL1 (27) and POLG (17); however, a wide spectrum of established and novel molecular defects, with overlapping phenotypes, was identified. Electrodiagnostic studies identified myopathy (77%), fibrillation potentials (27%) and axonal peripheral neuropathy (42%, most common with nuclear DNA variants). Among 42 muscle biopsies available, median percentage counts were highest for cytochrome C oxidase negative fibres (5.1%) then ragged blue (1.4%) and ragged red fibres (0.5%). Skeletal muscle weakness was mild and slowly progressive (decline in strength summated score of 0.01/year). Median time to gait assistance was 5.5 years from diagnosis and 17 years from symptom onset. Thirty patients died, with median survival of 33.4 years from symptom onset and 10.9 years from diagnosis. Median age at death was 55 years. Cardiac involvement was associated with increased mortality [hazard ratio 2.36 (1.05, 5.29)]. There was no difference in survival based on genotype or phenotype. Despite the wide phenotypic and genotypic spectrum, mitochondrial myopathies in adults share similar features with slowly progressive limb weakness, contrasting with common multiorgan involvement and high mortality.
Collapse
Affiliation(s)
- Grayson Beecher
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Ralitza H Gavrilova
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Lourdes SR, Gurung R, Giri S, Mitchell CA, McGrath MJ. A new role for phosphoinositides in regulating mitochondrial dynamics. Adv Biol Regul 2024; 91:101001. [PMID: 38057188 DOI: 10.1016/j.jbior.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Phosphoinositides are a minor group of membrane-associated phospholipids that are transiently generated on the cytoplasmic leaflet of many organelle membranes and the plasma membrane. There are seven functionally distinct phosphoinositides, each derived via the reversible phosphorylation of phosphatidylinositol in various combinations on the inositol ring. Their generation and termination is tightly regulated by phosphatidylinositol-kinases and -phosphatases. These enzymes can function together in an integrated and coordinated manner, whereby the phosphoinositide product of one enzyme may subsequently serve as a substrate for another to generate a different phosphoinositide species. This regulatory mechanism not only enables the transient generation of phosphoinositides on membranes, but also more complex sequential or bidirectional conversion pathways, and phosphoinositides can also be transferred between organelles via membrane contacts. It is this capacity to fine-tune phosphoinositide signals that makes them ideal regulators of membrane organization and dynamics, through their recruitment of signalling, membrane altering and lipid transfer proteins. Research spanning several decades has provided extensive evidence that phosphoinositides are major gatekeepers of membrane organization, with roles in endocytosis, exocytosis, autophagy, lysosome dynamics, vesicular transport and secretion, cilia, inter-organelle membrane contact, endosome maturation and nuclear function. By contrast, there has been remarkably little known about the role of phosphoinositides at mitochondria - an enigmatic and major knowledge gap, with challenges in reliably detecting phosphoinositides at this site. Here we review recent significant breakthroughs in understanding the role of phosphoinositides in regulating mitochondrial dynamics and metabolic function.
Collapse
Affiliation(s)
- Sonia Raveena Lourdes
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Saveen Giri
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Meagan J McGrath
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
8
|
Chen DH, Li W, Jiang HS, Yuan C. Case report: MELAS and T3271C mitochondrial mutation in an adult woman. Front Neurol 2023; 14:1179992. [PMID: 37576015 PMCID: PMC10413099 DOI: 10.3389/fneur.2023.1179992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Patients with mitochondrial disorders always show neurological deficits. However, the diversity of clinical manifestations, genetic heterogeneity and threshold effect caused by maternal heredity make its diagnosis very challenging. Case presentation A 30-year-old female presented to our neurology department with a recurrence of symmetrical weakness proximally in the lower extremities. Seven years ago, the patient had a sudden onset of persistent weakness in bilateral proximal lower extremities, along with elevated creatinine kinase (CK) and CK-MB. Given the diagnosis of Guillain-Barre syndrome, she was treated with high-dose glucocorticoid (GC) therapy at the local hospital and recovered. After admission to our hospital, laboratory analysis revealed elevated CK and alpha-hydroxybutyrate dehydrogenase in serum. Electrocardiography showed sinus tachycardia and left high ventricular voltage. Electromyography (EMG) and evoked potential (EP) suggested peripheral neurogenic damage of the upper and lower extremities with myogenic wear. Chronic inflammatory demyelinating polyneuropathy (CIDP) was initially considered, but neurological symptoms were not significantly improved with glucocorticoid shock therapy. An elevated level of lactate was found. The short-tau inversion recovery (STIR) axial magnetic resonance image (MRI) revealed mild hyperintensities, indicating muscle edema. Meanwhile, muscle biopsies suggested pathological changes in mitochondrial disorders (MIDs) and neuronal damage. Further mitochondrial genome analysis revealed a heteroplasmic m3271 T>C mutation in the mitochondrial tRNA-Leu gene (UUR). Collectively, the patient was finally diagnosed with mitochondrial disorder and apparently improved after the corresponding treatment to regulate energy metabolism. Conclusions To our knowledge, it's the first report about MELAS with 3271 mutation that have only shown peripheral nerve motion impairment. Proximal weakness is also common in CIDP. In the context of this patient's experience, mitochondrial genome analysis provides an auxiliary criterion for differential diagnosis between MIDs and CIDP. In the meantime, we discussed the clinical effect of GCs on MIDs.
Collapse
Affiliation(s)
| | | | - Hai-shan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Golomb BA, Han JH, Langsjoen PH, Dinkeloo E, Zemljic-Harpf AE. Statin Use in Relation to COVID-19 and Other Respiratory Infections: Muscle and Other Considerations. J Clin Med 2023; 12:4659. [PMID: 37510774 PMCID: PMC10380486 DOI: 10.3390/jcm12144659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Statins have been widely advocated for use in COVID-19 based on large favorable observational associations buttressed by theoretical expected benefits. However, past favorable associations of statins to pre-COVID-19 infection outcomes (also buttressed by theoretical benefits) were unsupported in meta-analysis of RCTs, RR = 1.00. Initial RCTs in COVID-19 appear to follow this trajectory. Healthy-user/tolerator effects and indication bias may explain these disparities. Moreover, cholesterol drops in proportion to infection severity, so less severely affected individuals may be selected for statin use, contributing to apparent favorable statin associations to outcomes. Cholesterol transports fat-soluble antioxidants and immune-protective vitamins. Statins impair mitochondrial function in those most reliant on coenzyme Q10 (a mevalonate pathway product also transported on cholesterol)-i.e., those with existing mitochondrial compromise, whom data suggest bear increased risks from both COVID-19 and from statins. Thus, statin risks of adverse outcomes are amplified in those patients at risk of poor COVID-19 outcomes-i.e., those in whom adjunctive statin therapy may most likely be given. High reported rates of rhabdomyolysis in hospitalized COVID-19 patients underscore the notion that statin-related risks as well as benefits must be considered. Advocacy for statins in COVID-19 should be suspended pending clear evidence of RCT benefits, with careful attention to risk modifiers.
Collapse
Affiliation(s)
- Beatrice A. Golomb
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | - Jun Hee Han
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA;
| | | | - Eero Dinkeloo
- Navy and Marine Corps Public Health Center, Portsmouth, VA 23704, USA;
| | - Alice E. Zemljic-Harpf
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92093, USA
| |
Collapse
|
10
|
Oliveira VCD, Roballo KCS, Mariano Junior CG, Ambrósio CE. Gene Editing Technologies Targeting TFAM and Its Relation to Mitochondrial Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:173-189. [PMID: 37486522 DOI: 10.1007/978-3-031-33325-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Mitochondria are organelles present in the cytoplasm of eukaryotic cells; they play a key role in adenosine triphosphate (ATP) synthesis and oxidative phosphorylation. Mitochondria have their own DNA, mitochondrial DNA (mtDNA), keeping the function of the mitochondria. Mitochondrial transcription factor A (TFAM) is a member of the HMGB subfamily that binds to mtDNA promoters is and considered essential in mtDNA replication and transcription. More recently, TFAM has been shown to play a central role in the maintenance and regulation of mitochondrial copy number, inflammatory response, expression regulation, and mitochondrial genome activity. Gene editing tools such as the CRISPR-Cas 9 technique, TALENs, and other gene editing tools have been used to investigate the role of TFAM in mitochondrial mechanics and biogenesis as well as its correlation to mitochondrial disorders. Thus this chapter brings a summary of mitochondria function, dysfunction, the importance of TFAM in the maintenance of mitochondria, and state of the art of gene editing tools involving TFAM and mtDNA.
Collapse
Affiliation(s)
- Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil.
| | - Kelly Cristine Santos Roballo
- Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Clesio Gomes Mariano Junior
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
11
|
Moore M, Yeske P, Parikh S. Navigating Life With Primary Mitochondrial Myopathies: The Importance of the Patient Voice and Implications for Clinical Practice. J Prim Care Community Health 2023; 14:21501319231193875. [PMID: 37646180 PMCID: PMC10467167 DOI: 10.1177/21501319231193875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023] Open
Abstract
Primary mitochondrial myopathies (PMM) are rare disorders with diverse and progressive symptom presentations that cause a substantial, detrimental impact on the quality of life of patients and their caregivers. The burden of symptoms is compounded by their visibility and their unpredictable, progressive nature, leading to a sense of social stigmatization, limited autonomy, social isolation, and grief. There is also a lack of awareness and expertise in the medical community, which presents huge obstacles to diagnosis and provision of coordinated multidisciplinary care for these patients, along with a lack of disease-modifying treatments. The present commentary serves to raise awareness of the challenges faced by patients with PMM and their caregivers in their own words, including diagnostic delays, the burden of disease, and the need for further trials to develop disease-modifying treatments and improved understanding of the disease course. We also provide commentary on considerations for clinical practice, including the need for holistic care and multidisciplinary care teams, details of common 'red flag' symptoms, proposed diagnostic approaches, and suggested descriptions of multisystemic symptoms for physician-patient dialogue. In addition, we highlight the role patient advocacy and support groups play in supporting patients and providing access to reliable, up-to-date information and educational resources on these rare diseases.
Collapse
Affiliation(s)
- Margaret Moore
- United Mitochondrial Disease Foundation, Pittsburgh, PA, USA
| | - Philip Yeske
- United Mitochondrial Disease Foundation, Pittsburgh, PA, USA
| | - Sumit Parikh
- Mitochondrial Medicine Center, Neuroscience Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
12
|
Hjelm BE, Ramiro C, Rollins BL, Omidsalar AA, Gerke DS, Das SC, Sequeira A, Morgan L, Schatzberg AF, Barchas JD, Lee FS, Myers RM, Watson SJ, Akil H, Bunney WE, Vawter MP. Large Common Mitochondrial DNA Deletions Are Associated with a Mitochondrial SNP T14798C Near the 3' Breakpoints. Complex Psychiatry 2023; 8:90-98. [PMID: 36778651 PMCID: PMC9909249 DOI: 10.1159/000528051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Large somatic deletions of mitochondrial DNA (mtDNA) accumulate with aging in metabolically active tissues such as the brain. We have cataloged the breakpoints and frequencies of large mtDNA deletions in the human brain. Methods We quantified 112 high-frequency mtDNA somatic deletions across four human brain regions with the Splice-Break2 pipeline. In addition, we utilized PLINK/Seq to test the association of mitochondrial genotypes with the abundance of these high-frequency mtDNA deletions. A conservative p value threshold of 5E-08 was used to find the significant loci. Results One mtDNA SNP (T14798C) was significantly associated with mtDNA deletions in two brain regions, the dorsolateral prefrontal cortex (DLPFC) and the superior temporal gyrus. Since the DLPFC showed the most robust association between T14798C and two deletion breakpoints (7816-14807 and 5462-14807), this association was tested in the DLPFC of a replication sample and validated the first results. Incorporating the C allele at 14,798 bp increased the perfect/imperfect length of the repeat at the 3' breakpoint of the two associated deletions. Conclusion This is the first study to identify the association of mtDNA SNP with large mtDNA deletions in the human brain. The T14798C allele located in the MT-CYB gene is a common polymorphism that occurs in several mitochondrial haplogroups. We hypothesize that the T14798C association with two deletions occurs by extending the repeat length around the 3' deletion breakpoints. This simple mechanism suggests that mtDNA SNPs can affect the mitochondrial genome structure, especially in brain where high levels of reactive oxygen species lead to deletion accumulation with aging.
Collapse
Affiliation(s)
- Brooke E. Hjelm
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Christian Ramiro
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Brandi L. Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Audrey A. Omidsalar
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Daniel S. Gerke
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sujan C. Das
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Ling Morgan
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Jack D. Barchas
- Department of Psychiatry, Weill Cornell Medical College, Ithaca, New York, USA
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College, Ithaca, New York, USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Stanley J. Watson
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, Michigan, USA
| | - Huda Akil
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, Michigan, USA
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA,*Marquis P. Vawter,
| |
Collapse
|
13
|
Bottoni P, Gionta G, Scatena R. Remarks on Mitochondrial Myopathies. Int J Mol Sci 2022; 24:ijms24010124. [PMID: 36613565 PMCID: PMC9820309 DOI: 10.3390/ijms24010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial myopathies represent a heterogeneous group of diseases caused mainly by genetic mutations to proteins that are related to mitochondrial oxidative metabolism. Meanwhile, a similar etiopathogenetic mechanism (i.e., a deranged oxidative phosphorylation and a dramatic reduction of ATP synthesis) reveals that the evolution of these myopathies show significant differences. However, some physiological and pathophysiological aspects of mitochondria often reveal other potential molecular mechanisms that could have a significant pathogenetic role in the clinical evolution of these disorders, such as: i. a deranged ROS production both in term of signaling and in terms of damaging molecules; ii. the severe modifications of nicotinamide adenine dinucleotide (NAD)+/NADH, pyruvate/lactate, and α-ketoglutarate (α-KG)/2- hydroxyglutarate (2-HG) ratios. A better definition of the molecular mechanisms at the basis of their pathogenesis could improve not only the clinical approach in terms of diagnosis, prognosis, and therapy of these myopathies but also deepen the knowledge of mitochondrial medicine in general.
Collapse
Affiliation(s)
- Patrizia Bottoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giulia Gionta
- Dipartimento Scienze Anatomiche Istologiche Medico Legali e dell’Apparato Locomotore—Sezione di Anatomia Umana, Università La Sapienza di Roma, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Roberto Scatena
- Dipartimento di Medicina di Laboratorio, Madre Giuseppina Vannini Hospital, Via di Acqua Bullicante 4, 00177 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
Heidari MM, Khatami M, Kamalipour A, Kalantari M, Movahed M, Emmamy MH, Hadadzadeh M, Bragança J, Namnabat M, Mazrouei B. Mitochondrial mutations in protein coding genes of respiratory chain including complexes IV, V, and mt-tRNA genes are associated risk factors for congenital heart disease. EXCLI JOURNAL 2022; 21:1306-1330. [PMID: 36483916 PMCID: PMC9727243 DOI: 10.17179/excli2022-5298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
Abstract
Most studies aiming at unraveling the molecular events associated with cardiac congenital heart disease (CHD) have focused on the effect of mutations occurring in the nuclear genome. In recent years, a significant role has been attributed to mitochondria for correct heart development and maturation of cardiomyocytes. Moreover, numerous heart defects have been associated with nucleotide variations occurring in the mitochondrial genome, affecting mitochondrial functions and cardiac energy metabolism, including genes encoding for subunits of respiratory chain complexes. Therefore, mutations in the mitochondrial genome may be a major cause of heart disease, including CHD, and their identification and characterization can shed light on pathological mechanisms occurring during heart development. Here, we have analyzed mitochondrial genetic variants in previously reported mutational genome hotspots and the flanking regions of mt-ND1, mt-ND2, mt-COXI, mt-COXII, mt-ATPase8, mt-ATPase6, mt-COXIII, and mt-tRNAs (Ile, Gln, Met, Trp, Ala, Asn, Cys, Tyr, Ser, Asp, and Lys) encoding genes by polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) in 200 patients with CHD, undergoing cardiac surgery. A total of 23 mitochondrial variations (5 missense mutations, 8 synonymous variations, and 10 nucleotide changes in tRNA encoding genes) were identified and included 16 novel variants. Additionally, we showed that intracellular ATP was significantly reduced (P=0.002) in CHD patients compared with healthy controls, suggesting that the mutations have an impact on mitochondrial energy production. Functional and structural alterations caused by the mitochondrial nucleotide variations in the gene products were studied in-silico and predicted to convey a predisposing risk factor for CHD. Further studies are necessary to better understand the mechanisms by which the alterations identified in the present study contribute to the development of CHD in patients.
Collapse
Affiliation(s)
- Mohammad Mehdi Heidari
- Department of Biology, Yazd University, Yazd, Iran,*To whom correspondence should be addressed: Mohammad Mehdi Heidari, Department of Biology, Yazd University, Yazd, Iran; Tel.: +98 353 1232650, Fax: +98 353 8210644, E-mail:
| | | | | | | | | | | | - Mehdi Hadadzadeh
- Department of Cardiac Surgery, Afshar Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - José Bragança
- Faculty of Medicine and Biomedical Sciences, Algarve Biomedical Center Research Institute, University of Algarve, Faro, Portugal
| | | | | |
Collapse
|
15
|
Abstract
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Collapse
Affiliation(s)
- Inna Shokolenko
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
16
|
Mitochondrial stroke-like episodes: the search for new therapies. Pharmacol Res 2022; 180:106228. [DOI: 10.1016/j.phrs.2022.106228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
|