1
|
Kumarajith TM, Powell SM, Breadmore MC. Isotachophoretic quantification of total viable bacteria on meat and surfaces. Anal Chim Acta 2024; 1296:342253. [PMID: 38401922 DOI: 10.1016/j.aca.2024.342253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND The quantification of microbes, particularly live bacteria, is of utmost importance in assessing the quality of meat products. In the context of meat processing facilities, prompt identification and removal of contaminated carcasses or surfaces is crucial to ensuring the continuous production of safe meat for human consumption. The plate count method and other traditional detection methods are not only labour-intensive but also time-consuming taking 24-48 h. RESULTS In this report, we present a novel isotachophoretic quantification method utilizing two nucleic acid stains, SYTO9 and propionic iodide, for the detection of total viable bacteria. The study employed E. coli M23 bacteria as a model organism, with an analysis time of only 30 min. The method demonstrated a limit of detection (LOD) of 184 CFU mL-1 and 14 cells mL-1 for total viable count and total cell count, respectively. Furthermore, this new approach is capable of detecting the microbial quality standard limits for food contacting surfaces (10 CFU cm-2) and meat (1.99 × 104 CFU cm-2) by swabbing an area of 10 × 10 cm2. SIGNIFICANCE In contrast to the culture-based methods usually employed in food processing facilities, this isotachophoretic technique enables easy and rapid detection (<30 min) of microorganisms, facilitating crucial decision-making essential for maintaining product quality and safety.
Collapse
Affiliation(s)
- Thisara M Kumarajith
- Australia Centre for Research on Separation Science, Chemistry, School of Natural Sciences, Tasmania, Australia; Tasmanian Institute of Agriculture, Tasmania, Australia
| | | | - Michael C Breadmore
- Australia Centre for Research on Separation Science, Chemistry, School of Natural Sciences, Tasmania, Australia.
| |
Collapse
|
2
|
Narayanan M, Srinivasan S, Gnanasekaran C, Ramachandran G, Chelliah CK, Rajivgandhi G, Maruthupandy M, Quero F, Li WJ, Hayder G, Khaled JM, Arunachalam A, Manoharan N. Synthesis and characterization of marine seagrass (Cymodocea serrulata) mediated titanium dioxide nanoparticles for antibacterial, antibiofilm and antioxidant properties. Microb Pathog 2024; 189:106595. [PMID: 38387848 DOI: 10.1016/j.micpath.2024.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 μg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 μg/mL and 160 μg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 μg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 μg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 μg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.
Collapse
Affiliation(s)
- Mohankumar Narayanan
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Suganthi Srinivasan
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Chackaravarthi Gnanasekaran
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Govindan Ramachandran
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Chenthis Kanisha Chelliah
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Govindan Rajivgandhi
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad DeChile, Avenida Beauchef 851, 8370456, Santiago, Chile; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Muthuchamy Maruthupandy
- Lab of Toxicology, Department of Health Sciences, The Graduate School of Dong-A University, 37, Nakdong-Dearo 550 Beon-Gil, Saha-Gu, Busan, 49315, South Korea
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad DeChile, Avenida Beauchef 851, 8370456, Santiago, Chile
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Gasim Hayder
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Kajang, 43000, Selangor Darul Ehsan, Malaysia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Arulraj Arunachalam
- Departamento de Electricidad, Facultad de Ingeniería, Universidad Tecnológica Metropolitana (UTEM), Macul, Santiago, Chile
| | - Natesan Manoharan
- Marine Pharmacology and Toxicology Laboratory, Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
3
|
Pauter-Iwicka K, Railean V, Złoch M, Pomastowski P, Szultka-Młyńska M, Błońska D, Kupczyk W, Buszewski B. Characterization of the salivary microbiome before and after antibiotic therapy via separation technique. Appl Microbiol Biotechnol 2023; 107:2515-2531. [PMID: 36843196 PMCID: PMC10033590 DOI: 10.1007/s00253-023-12371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/28/2023]
Abstract
In the present research, the MALDI-TOF MS technique was applied as a tool to rapidly identify the salivary microbiome. In this fact, it has been monitored the changes occurred in molecular profiles under different antibiotic therapy. Significant changes in the composition of the salivary microbiota were noticed not only in relation to the non antibiotic (non-AT) and antibiotic treatment (AT) groups, but also to the used media, the antibiotic therapy and co-existed microbiota. Each antibiotic generates specific changes in molecular profiles. The highest number of bacterial species was isolated in the universal culture medium (72%) followed by the selective medium (48% and 38%). In the case of non-AT patients, the prevalence of Streptococcus salivarius (25%), Streptococcus vestibularis (19%), Streptococcus oralis (13%), and Staphylococcus aureus (6%) was identified while in the case of AT, Streptococcus salivarius (11%), Streptococcus parasanguinis (11%), Staphylococcus epidermidis (12%), Enterococcus faecalis (9%), Staphylococcus hominis (8%), and Candida albicans (6%) were identified. Notable to specified that the Candida albicans was noticed only in AT samples, indicating a negative impact on the antibiotic therapy. The accuracy of the MALDI-TOF MS technique was performed by the 16S rRNA gene sequencing analysis-as a reference method. Conclusively, such an approach highlighted in the present study can help in developing the methods enabling a faster diagnosis of disease changes at the cellular level before clinical changes occur. Once the MALDI tool allows for the distinguishing of the microbiota of non-AT and AT, it may enable to monitor the diseases treatment and develop a treatment regimen for individual patients in relation to each antibiotic. KEY POINTS: The salivary microbiota of antibiotic-treated patients was more bacteria variety MALDI-TOF MS is a promising tool for recording of reproducible molecular profiles Our data can allow to monitor the treatment of bacterial diseases for patients.
Collapse
Affiliation(s)
- Katarzyna Pauter-Iwicka
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Viorica Railean
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| | - Michał Złoch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Dominika Błońska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Wojciech Kupczyk
- Department of General, Gastroenterological&Oncological Surgery Collegium Medicum, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland.
| |
Collapse
|
4
|
Tian C, Yuan M, Tao Q, Xu T, Liu J, Huang Z, Wu Q, Pan Y, Zhao Y, Zhang Z. Discovery of Novel Resistance Mechanisms of Vibrio parahaemolyticus Biofilm against Aminoglycoside Antibiotics. Antibiotics (Basel) 2023; 12:antibiotics12040638. [PMID: 37107000 PMCID: PMC10135303 DOI: 10.3390/antibiotics12040638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/08/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inappropriate use of antibiotics eventually leads to the emergence of antibiotic-resistant strains and invalidates the treatment of infectious diseases. Aminoglycoside antibiotics (AGAs) are a class of broad-spectrum cationic antibiotics widely used for the treatment of Gram-negative bacterial infections. Understanding the AGA resistance mechanism of bacteria would increase the efficacy of treating these infections. This study demonstrates a significant correlation between AGA resistance and the adaptation of biofilms by Vibrio parahaemolyticus (VP). These adaptations were the result of challenges against the aminoglycosides (amikacin and gentamicin). Confocal laser scanning microscope (CLSM) analysis revealed an enclosure type mechanism where the biological volume (BV) and average thickness (AT) of V. parahaemolyticus biofilm were significantly positively correlated with amikacin resistance (BIC) (p < 0.01). A neutralization type mechanism was mediated by anionic extracellular polymeric substances (EPSs). The biofilm minimum inhibitory concentrations of amikacin and gentamicin were reduced from 32 µg/mL to 16 µg/mL and from 16 µg/mL to 4 µg/mL, respectively, after anionic EPS treatment with DNase I and proteinase K. Here, anionic EPSs bind cationic AGAs to develop antibiotic resistance. Transcriptomic sequencing revealed a regulatory type mechanism, where antibiotic resistance associated genes were significantly upregulated in biofilm producing V. parahaemolyticus when compared with planktonic cells. The three mechanistic strategies of developing resistance demonstrate that selective and judicious use of new antibiotics are needed to win the battle against infectious disease.
Collapse
Affiliation(s)
- Cuifang Tian
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Mengqi Yuan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Tao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Tianming Xu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Jing Liu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhenhua Huang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Qian Wu
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, 999# Hu Cheng Huan Road, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Zhaohuan Zhang
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
5
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|