1
|
Goessinger EV, Dittrich PG, Nöcker P, Notni G, Weber S, Cerminara S, Mühleisen B, Navarini AA, Maul LV. Classification of melanocytic lesions using direct illumination multispectral imaging. Sci Rep 2024; 14:19036. [PMID: 39152181 PMCID: PMC11329730 DOI: 10.1038/s41598-024-69773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
With rising melanoma incidence and mortality, early detection and surgical removal of primary lesions is essential. Multispectral imaging is a new, non-invasive technique that can facilitate skin cancer detection by measuring the reflectance spectra of biological tissues. Currently, incident illumination allows little light to be reflected from deeper skin layers due to high surface reflectance. A pilot study was conducted at the University Hospital Basel to evaluate, whether multispectral imaging with direct light coupling could extract more information from deeper skin layers for more accurate dignity classification of melanocytic lesions. 27 suspicious pigmented lesions from 23 patients were included (6 melanomas, 6 dysplastic nevi, 12 melanocytic nevi, 3 other). Lesions were imaged before excision using a prototype snapshot mosaic multispectral camera with incident and direct illumination with subsequent dignity classification by a pre-trained multispectral image analysis model. Using incident light, a sensitivity of 83.3% and a specificity of 58.8% were achieved compared to dignity as determined by histopathological examination. Direct light coupling resulted in a superior sensitivity of 100% and specificity of 82.4%. Convolutional neural network classification of corresponding red, green, and blue lesion images resulted in 16.7% lower sensitivity (83.3%, 5/6 malignant lesions detected) and 20.9% lower specificity (61.5%) compared to direct light coupling with multispectral image classification. Our results show that incorporating direct light multispectral imaging into the melanoma detection process could potentially increase the accuracy of dignity classification. This newly evaluated illumination method could improve multispectral applications in skin cancer detection. Further larger studies are needed to validate the camera prototype.
Collapse
Affiliation(s)
| | - Paul-Gerald Dittrich
- Imaging and Sensing Department, Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Strasse 7, 07745, Jena, Germany.
- SpectroNet c/o Technologie- und Innovationspark Jena GmbH, Jena, Germany.
- Group for Quality Assurance and Industrial Image Processing, Department of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau, Germany.
| | - Philipp Nöcker
- Imaging and Sensing Department, Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Strasse 7, 07745, Jena, Germany
| | - Gunther Notni
- Group for Quality Assurance and Industrial Image Processing, Department of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau, Germany
| | | | - Sara Cerminara
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | - Beda Mühleisen
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland
| | | | - Lara Valeska Maul
- Department of Dermatology, University Hospital of Basel, Basel, Switzerland.
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Department of Dermatology, Felix Platter Hospital, University Hospital Basel, Burgfelderstrasse 101, 4055, Basel, Switzerland.
| |
Collapse
|
2
|
Andersson E, Hult J, Troein C, Stridh M, Sjögren B, Pekar-Lukacs A, Hernandez-Palacios J, Edén P, Persson B, Olariu V, Malmsjö M, Merdasa A. Facilitating clinically relevant skin tumor diagnostics with spectroscopy-driven machine learning. iScience 2024; 27:109653. [PMID: 38680659 PMCID: PMC11053315 DOI: 10.1016/j.isci.2024.109653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
In the dawning era of artificial intelligence (AI), health care stands to undergo a significant transformation with the increasing digitalization of patient data. Digital imaging, in particular, will serve as an important platform for AI to aid decision making and diagnostics. A growing number of studies demonstrate the potential of automatic pre-surgical skin tumor delineation, which could have tremendous impact on clinical practice. However, current methods rely on having ground truth images in which tumor borders are already identified, which is not clinically possible. We report a novel approach where hyperspectral images provide spectra from small regions representing healthy tissue and tumor, which are used to generate prediction maps using artificial neural networks (ANNs), after which a segmentation algorithm automatically identifies the tumor borders. This circumvents the need for ground truth images, since an ANN model is trained with data from each individual patient, representing a more clinically relevant approach.
Collapse
Affiliation(s)
- Emil Andersson
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Jenny Hult
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Carl Troein
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Magne Stridh
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Benjamin Sjögren
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | | | | | - Patrik Edén
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Bertil Persson
- Department of Dermatology, Skåne University Hospital, Lund, Sweden
| | - Victor Olariu
- Centre for Environmental and Climate Science, Lund University, Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Aboma Merdasa
- Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Huang HY, Hsiao YP, Karmakar R, Mukundan A, Chaudhary P, Hsieh SC, Wang HC. A Review of Recent Advances in Computer-Aided Detection Methods Using Hyperspectral Imaging Engineering to Detect Skin Cancer. Cancers (Basel) 2023; 15:5634. [PMID: 38067338 PMCID: PMC10705122 DOI: 10.3390/cancers15235634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 08/15/2024] Open
Abstract
Skin cancer, a malignant neoplasm originating from skin cell types including keratinocytes, melanocytes, and sweat glands, comprises three primary forms: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and malignant melanoma (MM). BCC and SCC, while constituting the most prevalent categories of skin cancer, are generally considered less aggressive compared to MM. Notably, MM possesses a greater capacity for invasiveness, enabling infiltration into adjacent tissues and dissemination via both the circulatory and lymphatic systems. Risk factors associated with skin cancer encompass ultraviolet (UV) radiation exposure, fair skin complexion, a history of sunburn incidents, genetic predisposition, immunosuppressive conditions, and exposure to environmental carcinogens. Early detection of skin cancer is of paramount importance to optimize treatment outcomes and preclude the progression of disease, either locally or to distant sites. In pursuit of this objective, numerous computer-aided diagnosis (CAD) systems have been developed. Hyperspectral imaging (HSI), distinguished by its capacity to capture information spanning the electromagnetic spectrum, surpasses conventional RGB imaging, which relies solely on three color channels. Consequently, this study offers a comprehensive exploration of recent CAD investigations pertaining to skin cancer detection and diagnosis utilizing HSI, emphasizing diagnostic performance parameters such as sensitivity and specificity.
Collapse
Affiliation(s)
- Hung-Yi Huang
- Department of Dermatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia Yi City 60002, Taiwan;
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan;
- Institute of Medicine, School of Medicine, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
| | - Pramod Chaudhary
- Department of Aeronautical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600 062, India;
| | - Shang-Chin Hsieh
- Department of Plastic Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
- Department of Medical Research, Dalin Tzu Chi General Hospital, No. 2, Min-Sheng Rd., Dalin Town, Chia Yi City 62247, Taiwan
- Technology Development, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung 80661, Taiwan
| |
Collapse
|
4
|
Scheau C, Caruntu C, Caruntu A. Current Approach and Future Directions in the Diagnosis and Prognosis of Keratinocyte Carcinomas. J Clin Med 2023; 12:3974. [PMID: 37373672 DOI: 10.3390/jcm12123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Keratinocyte carcinomas (KCs) are malignancies developed from keratinocytes or their precursors [...].
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, The Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
5
|
Jong LJS, Post AL, Veluponnar D, Geldof F, Sterenborg HJCM, Ruers TJM, Dashtbozorg B. Tissue Classification of Breast Cancer by Hyperspectral Unmixing. Cancers (Basel) 2023; 15:2679. [PMID: 37345015 DOI: 10.3390/cancers15102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
(1) Background: Assessing the resection margins during breast-conserving surgery is an important clinical need to minimize the risk of recurrent breast cancer. However, currently there is no technique that can provide real-time feedback to aid surgeons in the margin assessment. Hyperspectral imaging has the potential to overcome this problem. To classify resection margins with this technique, a tissue discrimination model should be developed, which requires a dataset with accurate ground-truth labels. However, establishing such a dataset for resection specimens is difficult. (2) Methods: In this study, we therefore propose a novel approach based on hyperspectral unmixing to determine which pixels within hyperspectral images should be assigned to the ground-truth labels from histopathology. Subsequently, we use this hyperspectral-unmixing-based approach to develop a tissue discrimination model on the presence of tumor tissue within the resection margins of ex vivo breast lumpectomy specimens. (3) Results: In total, 372 measured locations were included on the lumpectomy resection surface of 189 patients. We achieved a sensitivity of 0.94, specificity of 0.85, accuracy of 0.87, Matthew's correlation coefficient of 0.71, and area under the curve of 0.92. (4) Conclusion: Using this hyperspectral-unmixing-based approach, we demonstrated that the measured locations with hyperspectral imaging on the resection surface of lumpectomy specimens could be classified with excellent performance.
Collapse
Affiliation(s)
- Lynn-Jade S Jong
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Anouk L Post
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Dinusha Veluponnar
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Freija Geldof
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Henricus J C M Sterenborg
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Theo J M Ruers
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Behdad Dashtbozorg
- Department of Surgery, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ilișanu MA, Moldoveanu F, Moldoveanu A. Multispectral Imaging for Skin Diseases Assessment-State of the Art and Perspectives. SENSORS (BASEL, SWITZERLAND) 2023; 23:3888. [PMID: 37112229 PMCID: PMC10140977 DOI: 10.3390/s23083888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Skin optical inspection is an imperative procedure for a suspicious dermal lesion since very early skin cancer detection can guarantee total recovery. Dermoscopy, confocal laser scanning microscopy, optical coherence tomography, multispectral imaging, multiphoton laser imaging, and 3D topography are the most outstanding optical techniques implemented for skin examination. The accuracy of dermatological diagnoses attained by each of those methods is still debatable, and only dermoscopy is frequently used by all dermatologists. Therefore, a comprehensive method for skin analysis has not yet been established. Multispectral imaging (MSI) is based on light-tissue interaction properties due to radiation wavelength variation. An MSI device collects the reflected radiation after illumination of the lesion with light of different wavelengths and provides a set of spectral images. The concentration maps of the main light-absorbing molecules in the skin, the chromophores, can be retrieved using the intensity values from those images, sometimes even for deeper-located tissues, due to interaction with near-infrared light. Recent studies have shown that portable and cost-efficient MSI systems can be used for extracting skin lesion characteristics useful for early melanoma diagnoses. This review aims to describe the efforts that have been made to develop MSI systems for skin lesions evaluation in the last decade. We examined the hardware characteristics of the produced devices and identified the typical structure of an MSI device for dermatology. The analyzed prototypes showed the possibility of improving the specificity of classification between the melanoma and benign nevi. Currently, however, they are rather adjuvants tools for skin lesion assessment, and efforts are needed towards a fully fledged diagnostic MSI device.
Collapse
|
7
|
Tomanic T, Rogelj L, Stergar J, Markelc B, Bozic T, Brezar SK, Sersa G, Milanic M. Estimating quantitative physiological and morphological tissue parameters of murine tumor models using hyperspectral imaging and optical profilometry. JOURNAL OF BIOPHOTONICS 2023; 16:e202200181. [PMID: 36054067 DOI: 10.1002/jbio.202200181] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Understanding tumors and their microenvironment are essential for successful and accurate disease diagnosis. Tissue physiology and morphology are altered in tumors compared to healthy tissues, and there is a need to monitor tumors and their surrounding tissues, including blood vessels, non-invasively. This preliminary study utilizes a multimodal optical imaging system combining hyperspectral imaging (HSI) and three-dimensional (3D) optical profilometry (OP) to capture hyperspectral images and surface shapes of subcutaneously grown murine tumor models. Hyperspectral images are corrected with 3D OP data and analyzed using the inverse-adding doubling (IAD) method to extract tissue properties such as melanin volume fraction and oxygenation. Blood vessels are segmented using the B-COSFIRE algorithm from oxygenation maps. From 3D OP data, tumor volumes are calculated and compared to manual measurements using a vernier caliper. Results show that tumors can be distinguished from healthy tissue based on most extracted tissue parameters ( p < 0.05 ). Furthermore, blood oxygenation is 50% higher within the blood vessels than in the surrounding tissue, and tumor volumes calculated using 3D OP agree within 26% with manual measurements using a vernier caliper. Results suggest that combining HSI and OP could provide relevant quantitative information about tumors and improve the disease diagnosis.
Collapse
Affiliation(s)
- Tadej Tomanic
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Rogelj
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Jost Stergar
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Tim Bozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Milanic
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
8
|
Cui R, Yu H, Xu T, Xing X, Cao X, Yan K, Chen J. Deep Learning in Medical Hyperspectral Images: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249790. [PMID: 36560157 PMCID: PMC9784550 DOI: 10.3390/s22249790] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/13/2023]
Abstract
With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.
Collapse
Affiliation(s)
- Rong Cui
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| | - He Yu
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China
| | - Tingfa Xu
- Image Engineering & Video Technology Lab, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaoxue Xing
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
- Jilin Provincial Key Laboratory of Human Health Status Identification and Function Enhancement, Changchun University, Changchun 130022, China
| | - Xiaorui Cao
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| | - Kang Yan
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| | - Jiexi Chen
- College of Electronic and Information Engineering, Changchun University, Changchun 130022, China
| |
Collapse
|
9
|
Rahkonen S, Lind L, Raita-Hakola AM, Kiiskinen S, Pölönen I. Reflectance Measurement Method Based on Sensor Fusion of Frame-Based Hyperspectral Imager and Time-of-Flight Depth Camera. SENSORS (BASEL, SWITZERLAND) 2022; 22:8668. [PMID: 36433268 PMCID: PMC9696373 DOI: 10.3390/s22228668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Hyperspectral imaging and distance data have previously been used in aerial, forestry, agricultural, and medical imaging applications. Extracting meaningful information from a combination of different imaging modalities is difficult, as the image sensor fusion requires knowing the optical properties of the sensors, selecting the right optics and finding the sensors' mutual reference frame through calibration. In this research we demonstrate a method for fusing data from Fabry-Perot interferometer hyperspectral camera and a Kinect V2 time-of-flight depth sensing camera. We created an experimental application to demonstrate utilizing the depth augmented hyperspectral data to measure emission angle dependent reflectance from a multi-view inferred point cloud. We determined the intrinsic and extrinsic camera parameters through calibration, used global and local registration algorithms to combine point clouds from different viewpoints, created a dense point cloud and determined the angle dependent reflectances from it. The method could successfully combine the 3D point cloud data and hyperspectral data from different viewpoints of a reference colorchecker board. The point cloud registrations gained 0.29-0.36 fitness for inlier point correspondences and RMSE was approx. 2, which refers a quite reliable registration result. The RMSE of the measured reflectances between the front view and side views of the targets varied between 0.01 and 0.05 on average and the spectral angle between 1.5 and 3.2 degrees. The results suggest that changing emission angle has very small effect on the surface reflectance intensity and spectrum shapes, which was expected with the used colorchecker.
Collapse
|
10
|
Prezja F, Paloneva J, Pölönen I, Niinimäki E, Äyrämö S. DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification. Sci Rep 2022; 12:18573. [PMID: 36329253 PMCID: PMC9633706 DOI: 10.1038/s41598-022-23081-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022] Open
Abstract
Recent developments in deep learning have impacted medical science. However, new privacy issues and regulatory frameworks have hindered medical data sharing and collection. Deep learning is a very data-intensive process for which such regulatory limitations limit the potential for new breakthroughs and collaborations. However, generating medically accurate synthetic data can alleviate privacy issues and potentially augment deep learning pipelines. This study presents generative adversarial neural networks capable of generating realistic images of knee joint X-rays with varying osteoarthritis severity. We offer 320,000 synthetic (DeepFake) X-ray images from training with 5,556 real images. We validated our models regarding medical accuracy with 15 medical experts and for augmentation effects with an osteoarthritis severity classification task. We devised a survey of 30 real and 30 DeepFake images for medical experts. The result showed that on average, more DeepFakes were mistaken for real than the reverse. The result signified sufficient DeepFake realism for deceiving the medical experts. Finally, our DeepFakes improved classification accuracy in an osteoarthritis severity classification task with scarce real data and transfer learning. In addition, in the same classification task, we replaced all real training data with DeepFakes and suffered only a [Formula: see text] loss from baseline accuracy in classifying real osteoarthritis X-rays.
Collapse
Affiliation(s)
- Fabi Prezja
- Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland.
| | - Juha Paloneva
- Department of Surgery, Central Finland Healthcare District, 40620, Jyväskylä, Finland
- School of Medicine, University of Eastern Finland, 70211, Kuopio, Finland
| | - Ilkka Pölönen
- Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Esko Niinimäki
- Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Sami Äyrämö
- Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland
| |
Collapse
|