1
|
Liu Q, Shang Y, Shen L, Yu X, Cao Y, Zeng L, Zhang H, Rao Z, Li Y, Tao Z, Liu Z, Huang X. Outer membrane vesicles from genetically engineered Salmonella enterica serovar Typhimurium presenting Helicobacter pylori antigens UreB and CagA induce protection against Helicobacter pylori infection in mice. Virulence 2024; 15:2367783. [PMID: 38937901 PMCID: PMC11216100 DOI: 10.1080/21505594.2024.2367783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024] Open
Abstract
Helicobacter pylori causes globally prevalent infections that are highly related to chronic gastritis and even development of gastric carcinomas. With the increase of antibiotic resistance, scientists have begun to search for better vaccine design strategies to eradicate H. pylori colonization. However, while current strategies prefer to formulate vaccines with a single H. pylori antigen, their potential has not yet been fully realized. Outer membrane vesicles (OMVs) are a potential platform since they could deliver multiple antigens. In this study, we engineered three crucial H. pylori antigen proteins (UreB, CagA, and VacA) onto the surface of OMVs derived from Salmonella enterica serovar Typhimurium (S. Typhimurium) mutant strains using the hemoglobin protease (Hbp) autotransporter system. In various knockout strategies, we found that OMVs isolated from the ΔrfbP ΔfliC ΔfljB ΔompA mutants could cause distinct increases in immunoglobulin G (IgG) and A (IgA) levels and effectively trigger T helper 1- and 17-biased cellular immune responses, which perform a vital role in protecting against H. pylori. Next, OMVs derived from ΔrfbP ΔfliC ΔfljB ΔompA mutants were used as a vector to deliver different combinations of H. pylori antigens. The antibody and cytokine levels and challenge experiments in mice model indicated that co-delivering UreB and CagA could protect against H. pylori and antigen-specific T cell responses. In summary, OMVs derived from the S. Typhimurium ΔrfbP ΔfliC ΔfljB ΔompA mutant strain as the vector while importing H. pylori UreB and CagA as antigenic proteins using the Hbp autotransporter system would greatly benefit controlling H. pylori infection.
Collapse
Affiliation(s)
- Qiong Liu
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Yinpan Shang
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Lu Shen
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Xiaomin Yu
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Yanli Cao
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Lingbing Zeng
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Hanchi Zhang
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Zirong Rao
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Yi Li
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
- The First Clinical Medical College, Nanchang University, Nanchang, China
| | - Ziwei Tao
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| | - Zhili Liu
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- The First Affiliated Hospital, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University
| |
Collapse
|
2
|
Huang Y, Chen Y, Ma L, Guo H, Chen H, Qiu B, Yao M, Huang W, Zhu L. The toxic effects of Helicobacter pylori and benzo(a)pyrene in inducing atrophic gastritis and gut microbiota dysbiosis in Mongolian gerbils. Food Sci Nutr 2024; 12:7568-7580. [PMID: 39479696 PMCID: PMC11521681 DOI: 10.1002/fsn3.4368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 11/02/2024] Open
Abstract
Food chemical and microbiological contamination are major global food safety issues. This study investigated the combined effects of the food-borne pathogen Helicobacter pylori (H. pylori) and the pollutant benzo(a)pyrene (Bap) on atrophic gastritis and gut microbiota in Mongolian gerbils. The results demonstrated that simultaneous administration of H. pylori and Bap caused more severe weight loss, DNA damage, and gastritis in Mongolian gerbils compared with those exposed to H. pylori or Bap alone. The combination also significantly increased the serum level of proinflammatory cytokines, including IL-1β (p < .05), IL-6 (p < .0001), and TNF-α (p < .05). Additionally, the H. pylori and Bap combination altered the composition of gut microbiota in Mongolian gerbils: the relative abundance of Lactobacillus and Ligilactobacillus at the genus level (p < .05) was significantly reduced while the relative abundance of Allobaculum and Erysipelotrichaceae enhanced (p < .0001, p < .05). Our study revealed that the synergy of H. pylori and Bap can boost the development of atrophic gastritis and lead to gut microbiota dysbiosis in Mongolian gerbils, which provides essential implications for preventing contaminated foods to sustain life and promote well-being.
Collapse
Affiliation(s)
- Yilun Huang
- Alberta Institute, Wenzhou Medical UniversityWenzhouChina
| | - Yunxiang Chen
- Center for Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Lingfei Ma
- Institute for Health PolicyHangzhou Medical CollegeHangzhouChina
| | - Honggang Guo
- Center of Laboratory AnimalHangzhou Medical CollegeHangzhouChina
| | - Hao Chen
- Center for Safety Evaluation and ResearchHangzhou Medical CollegeHangzhouChina
| | - Bo Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Weixin Huang
- Shaoxing Tongchuang Biotechnology Co., LtdShaoxingChina
| | - Lian Zhu
- School of Basic Medical Sciences and Forensic MedicineHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
3
|
Li J, Yuan W, Liu J, Yang B, Xu X, Ren X, Jia L. Association between Helicobacter pylori infection and type 2 diabetes mellitus: a retrospective cohort study and bioinformatics analysis. BMC Endocr Disord 2024; 24:168. [PMID: 39215298 PMCID: PMC11363574 DOI: 10.1186/s12902-024-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE This study aimed to preliminarily investigate the association and possible mechanisms between Helicobacter. pylori (H. pylori) infection and type 2 diabetes mellitus (T2DM) through data collection, statistical analysis, and bioinformatics analysis. METHODS A retrospective cohort study, including a total of 4406 participants who attended annual health checkups at Xian GEM Flower Changqing Hospital, was conducted to explore the correlation between the incidence of T2DM and H. pylori infection. To uncover the potential mechanisms underlying the interaction between the two diseases, differentially expressed genes (DEGs) common to T2DM and H. pylori infection were identified using the GEO database and Venn diagrams. These DEGs were then analyzed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein-protein interaction (PPI) analysis. RESULTS In total, 2053 participants were classified into the H. pylori-positive group and 2353 into the H. pylori-negative group. H. pylori infection was associated with a higher risk of T2DM occurrence (adjusted HR 1.59; 95% CI 1.17-2.15, P = 0.003). The average disease-free survival time was 34.81 months (95% CI 34.60-35.03 months) in the H. pylori positive group and 35.42 months (95% CI 35.28-35.56 months) in the H. pylori negative group. Multivariate analysis and subgroup analyses also showed that H. pylori infection increased the risk of developing T2DM. A total of 21 DEGs between T2DM and H. pylori infection were identified and enriched in 7 signaling pathways, indicating specific protein interactions. CONCLUSIONS The prevalence of T2DM was associated with H. pylori infection. T2DM and H. pylori infection may interact with each other through metabolic and immune pathways.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Health Management, Xi'an GEM Flower Changqing Hospital, 20 West Changqing Road, Xi'an, 710201, China
| | - Wenjie Yuan
- Department of Kinesiotherapy, Shaanxi Provincial Rehabilitation Hospital, 52 Second Dianzi Road, Xi'an, 710065, China
| | - Jing Liu
- Department of Health Management, Xi'an GEM Flower Changqing Hospital, 20 West Changqing Road, Xi'an, 710201, China
| | - Bowei Yang
- Department of Health Management, Xi'an GEM Flower Changqing Hospital, 20 West Changqing Road, Xi'an, 710201, China
| | - Xiao Xu
- Department of Health Management, Xi'an GEM Flower Changqing Hospital, 20 West Changqing Road, Xi'an, 710201, China
| | - Xiaoxia Ren
- Department of Health Management, Xi'an GEM Flower Changqing Hospital, 20 West Changqing Road, Xi'an, 710201, China
| | - Lianxu Jia
- Department of Health Management, Xi'an GEM Flower Changqing Hospital, 20 West Changqing Road, Xi'an, 710201, China.
| |
Collapse
|
4
|
Hurtado-Monzón EG, Valencia-Mayoral P, Silva-Olivares A, Bañuelos C, Velázquez-Guadarrama N, Betanzos A. The Helicobacter pylori infection alters the intercellular junctions on the pancreas of gerbils (Meriones unguiculatus). World J Microbiol Biotechnol 2024; 40:273. [PMID: 39030443 PMCID: PMC11271430 DOI: 10.1007/s11274-024-04081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Helicobacter pylori is a common resident in the stomach of at least half of the world's population and recent evidence suggest its emergence in other organs such as the pancreas. In this organ, the presence of H. pylori DNA has been reported in cats, although the functional implications remain unknown. In this work, we determined distinct features related to the H. pylori manifestation in pancreas in a rodent model, in order to analyse its functional and structural effect. Gerbils inoculated with H. pylori exhibited the presence of this bacterium, as revealed by the expression of some virulence factors, as CagA and OMPs in stomach and pancreas, and confirmed by urease activity, bacterial culture, PCR and immunofluorescence assays. Non-apparent morphological changes were observed in pancreatic tissue of infected animals; however, delocalization of intercellular junction proteins (claudin-1, claudin-4, occludin, ZO-1, E-cadherin, β-catenin, desmoglein-2 and desmoplakin I/II) and rearrangement of the actin-cytoskeleton were exhibited. This structural damage was consistent with alterations in the distribution of insulin and glucagon, and a systemic inflammation, event demonstrated by elevated IL-8 levels. Overall, these findings indicate that H. pylori can reach the pancreas, possibly affecting its function and contributing to the development of pancreatic diseases.
Collapse
Affiliation(s)
- Edgar G Hurtado-Monzón
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - Angélica Silva-Olivares
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, CINVESTAV-IPN, Ciudad de Mexico, México
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México.
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México.
| |
Collapse
|
5
|
Filardo S, Di Pietro M, Sessa R. Current progresses and challenges for microbiome research in human health: a perspective. Front Cell Infect Microbiol 2024; 14:1377012. [PMID: 38638832 PMCID: PMC11024239 DOI: 10.3389/fcimb.2024.1377012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
It is becoming increasingly clear that the human microbiota, also known as "the hidden organ", possesses a pivotal role in numerous processes involved in maintaining the physiological functions of the host, such as nutrient extraction, biosynthesis of bioactive molecules, interplay with the immune, endocrine, and nervous systems, as well as resistance to the colonization of potential invading pathogens. In the last decade, the development of metagenomic approaches based on the sequencing of the bacterial 16s rRNA gene via Next Generation Sequencing, followed by whole genome sequencing via third generation sequencing technologies, has been one of the great advances in molecular biology, allowing a better profiling of the human microbiota composition and, hence, a deeper understanding of the importance of microbiota in the etiopathogenesis of different pathologies. In this scenario, it is of the utmost importance to comprehensively characterize the human microbiota in relation to disease pathogenesis, in order to develop novel potential treatment or preventive strategies by manipulating the microbiota. Therefore, this perspective will focus on the progress, challenges, and promises of the current and future technological approaches for microbiome profiling and analysis.
Collapse
Affiliation(s)
| | | | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Section of Microbiology, University of Rome “Sapienza”, Rome, Italy
| |
Collapse
|
6
|
Ma PF, Zhuo L, Yuan LP, Qi XH. Recent Advances in Vitamin D3 Intervention to Eradicate Helicobacter pylori Infection. J Multidiscip Healthc 2024; 17:825-832. [PMID: 38434485 PMCID: PMC10906669 DOI: 10.2147/jmdh.s454605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Helicobacter pylori (HP) infections affect approximately one-third of children worldwide. In China, the incidence of HP infection in children ranges from approximately 30% to 60%. In addition to damaging the gastrointestinal tract mucosa, HP infection in children can negatively affect their growth and development, hematology, respiratory and hepatobiliary system, skin, nutritional metabolism, and autoimmune system. However, the rate of HP eradication also fell considerably from the previous rate due to the presence of drug-resistant HP strains and the limited types of antibiotics that can be used in young patients. Vitamin D3 (VitD3) is a steroid hormone that can reduce inflammation in the stomach mucosa induced by HP and can alleviate and eradicate HP through a variety of pathways and mechanisms, including immune regulation and the stimulation of antimicrobial peptide (AMP) secretion and Ca2+ influx, to reestablish lysosomal acidification; thus, these results provide new strategies and ideas for the eradication of drug-resistant HP strains.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Lin Zhuo
- Department of Gastroenterology, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| | - Li-Ping Yuan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiao-Hui Qi
- Department of Pediatrics, Children’s Hospital of Fudan University at Anhui (Anhui Provincial Children’s Hospital), Hefei, Anhui, People’s Republic of China
| |
Collapse
|
7
|
Kamankesh M, Yadegar A, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Miri AH, Rad-Malekshahi M, Hamblin MR, Wacker MG. Future Nanotechnology-Based Strategies for Improved Management of Helicobacter pylori Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302532. [PMID: 37697021 DOI: 10.1002/smll.202302532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/25/2023] [Indexed: 09/13/2023]
Abstract
Helicobacter pylori (H. pylori) is a recalcitrant pathogen, which can cause gastric disorders. During the past decades, polypharmacy-based regimens, such as triple and quadruple therapies have been widely used against H. pylori. However, polyantibiotic therapies can disturb the host gastric/gut microbiota and lead to antibiotic resistance. Thus, simpler but more effective approaches should be developed. Here, some recent advances in nanostructured drug delivery systems to treat H. pylori infection are summarized. Also, for the first time, a drug release paradigm is proposed to prevent H. pylori antibiotic resistance along with an IVIVC model in order to connect the drug release profile with a reduction in bacterial colony counts. Then, local delivery systems including mucoadhesive, mucopenetrating, and cytoadhesive nanobiomaterials are discussed in the battle against H. pylori infection. Afterward, engineered delivery platforms including polymer-coated nanoemulsions and polymer-coated nanoliposomes are poposed. These bioinspired platforms can contain an antimicrobial agent enclosed within smart multifunctional nanoformulations. These bioplatforms can prevent the development of antibiotic resistance, as well as specifically killing H. pylori with no or only slight negative effects on the host gastrointestinal microbiota. Finally, the essential checkpoints that should be passed to confirm the potential effectiveness of anti-H. pylori nanosystems are discussed.
Collapse
Affiliation(s)
- Mojtaba Kamankesh
- Polymer Chemistry Department, School of Science, University of Tehran, PO Box 14155-6455, Tehran, 14144-6455, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Insituto de Salud Carlos III, Valencia, 46022, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717411, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore, 117545, Singapore
| |
Collapse
|
8
|
Nguyen TKC, Do HDK, Nguyen TLP, Pham TT, Mach BN, Nguyen TC, Pham TL, Katsande PM, Hong HA, Duong HT, Phan AN, Cutting SM, Vu MT, Nguyen VD. Genomic and vaccine preclinical studies reveal a novel mouse-adapted Helicobacter pylori model for the hpEastAsia genotype in Southeast Asia. J Med Microbiol 2024; 73. [PMID: 38235783 DOI: 10.1099/jmm.0.001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Introduction. Helicobacter pylori infection is a major global health concern, linked to the development of various gastrointestinal diseases, including gastric cancer. To study the pathogenesis of H. pylori and develop effective intervention strategies, appropriate animal pathogen models that closely mimic human infection are essential.Gap statement. This study focuses on the understudied hpEastAsia genotype in Southeast Asia, a region marked by a high H. pylori infection rate. No mouse-adapted model strains has been reported previously. Moreover, it recognizes the urgent requirement for vaccines in developing countries, where overuse of antimicrobials is fuelling the emergence of resistance.Aim. This study aims to establish a novel mouse-adapted H. pylori model specific to the hpEastAsia genotype prevalent in Southeast Asia, focusing on comparative genomic and histopathological analysis of pathogens coupled with vaccine preclinical studies.Methodology. We collected and sequenced the whole genome of clinical strains of H. pylori from infected patients in Vietnam and performed comparative genomic analyses of H. pylori strains in Southeast Asia. In parallel, we conducted preclinical studies to assess the pathogenicity of the mouse-adapted H. pylori strain and the protective effect of a new spore-vectored vaccine candidate on male Mlac:ICR mice and the host immune response in a female C57BL/6 mouse model.Results. Genome sequencing and comparison revealed unique and common genetic signatures, antimicrobial resistance genes and virulence factors in strains HP22 and HP34; and supported clarithromycin-resistant HP34 as a representation of the hpEastAsia genotype in Vietnam and Southeast Asia. HP34-infected mice exhibited gastric inflammation, epithelial erosion and dysplastic changes that closely resembled the pathology observed in human H. pylori infection. Furthermore, comprehensive immunological characterization demonstrated a robust host immune response, including both mucosal and systemic immune responses. Oral vaccination with candidate vaccine formulations elicited a significant reduction in bacterial colonization in the model.Conclusion. Our findings demonstrate the successful development of a novel mouse-adapted H. pylori model for the hpEastAsia genotype in Vietnam and Southeast Asia. Our research highlights the distinctive genotype and pathogenicity of clinical H. pylori strains in the region, laying the foundation for targeted interventions to address this global health burden.
Collapse
Affiliation(s)
- Thi Kim Cuc Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Thi Lan Phuong Nguyen
- Institute of Vaccines and Biological Medicals (IVAC), 9 Pasteur Street, Nha Trang, Khanh Hoa, Vietnam
| | - Thu Thuy Pham
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Bao Ngoc Mach
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Thi Chinh Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Thi Lan Pham
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
| | - Paidamoyo M Katsande
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Huynh Anh Hong
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Huu Thai Duong
- Institute of Vaccines and Biological Medicals (IVAC), 9 Pasteur Street, Nha Trang, Khanh Hoa, Vietnam
| | - Anh N Phan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Simon M Cutting
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Minh Thiet Vu
- NTT Hi-tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City, Vietnam
| | - Van Duy Nguyen
- Institute of Biotechnology and Environment, Nha Trang University, 2 Nguyen Dinh Chieu Street, Khanh Hoa, Vietnam
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
9
|
Wang X, Hong F, Li H, Wang Y, Zhang M, Lin S, Liang H, Zhou H, Liu Y, Chen YG. Cross-species single-cell transcriptomic analysis of animal gastric antrum reveals intense porcine mucosal immunity. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:27. [PMID: 37525021 PMCID: PMC10390400 DOI: 10.1186/s13619-023-00171-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
As an important part of the stomach, gastric antrum secretes gastrin which can regulate acid secretion and gastric emptying. Although most cell types in the gastric antrum are identified, the comparison of cell composition and gene expression in the gastric antrum among different species are not explored. In this study, we collected antrum epithelial tissues from human, pig, rat and mouse for scRNA-seq and compared cell types and gene expression among species. In pig antral epithelium, we identified a novel cell cluster, which is marked by high expression of AQP5, F3, CLCA1 and RRAD. We also discovered that the porcine antral epithelium has stronger immune function than the other species. Further analysis revealed that this may be due to the insufficient function of porcine immune cells. Together, our results replenish the information of multiple species of gastric antral epithelium at the single cell level and provide resources for understanding the homeostasis maintenance and regeneration of gastric antrum epithelium.
Collapse
Affiliation(s)
- Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fan Hong
- Guangzhou Laboratory, Guangzhou, 510005, China
| | - Haonan Li
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yalong Wang
- Guangzhou Laboratory, Guangzhou, 510005, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shibo Lin
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hui Liang
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Hongwen Zhou
- The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Guangzhou Laboratory, Guangzhou, 510005, China.
- School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Deng Y, Wang R, Li X, Tan X, Zhang Y, Gooneratne R, Li J. Fish Oil Ameliorates Vibrio parahaemolyticus Infection in Mice by Restoring Colonic Microbiota, Metabolic Profiles, and Immune Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6920-6934. [PMID: 37126589 DOI: 10.1021/acs.jafc.2c08559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The effect of fish oil (FO) on colonic function, immunity, and microbiota was investigated in Vibrio parahaemolyticus (Vp)-infected C57BL/6J mice. Mice intragastrically presupplemented with FO (4.0 mg) significantly reduced Vp infection as evidenced by stabilizing body weight and reducing disease activity index score and immune organ ratios. FO minimized colonic pathological damage, strengthened the mucosal barrier, and sustained epithelial permeability by increasing epithelial crypt depth, goblet cell numbers, and tight junctions and inhibiting colonic collagen accumulation and fibrosis protein expression. Mechanistically, FO enhanced immunity by decreasing colonic CD3+ T cells, increasing CD4+ T cells, downregulating the TLR4 pathway, reducing interleukin-17 (IL-17) and tumor necrosis factor-α, and increasing immune cytokine IL-4 and interferon-γ levels. Additionally, FO maintained colonic microbiota eubiosis by improving microbial diversity and boosting Clostridium, Akkermansia, and Roseburia growth and their derived propionic acid and butyric acid levels. Collectively, FO alleviated Vp infection by enriching beneficial colonic microbiota and metabolites and restoring immune homeostasis.
Collapse
Affiliation(s)
- Yijia Deng
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Rundong Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Xiqian Tan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Jianrong Li
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
11
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
12
|
Hatakeyama M. Impact of the Helicobacter pylori Oncoprotein CagA in Gastric Carcinogenesis. Curr Top Microbiol Immunol 2023; 444:239-257. [PMID: 38231221 DOI: 10.1007/978-3-031-47331-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori CagA is the first and only bacterial oncoprotein etiologically associated with human cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA acts as a pathogenic/pro-oncogenic scaffold that interacts with and functionally perturbs multiple host proteins such as pro-oncogenic SHP2 phosphatase and polarity-regulating kinase PAR1b/MARK2. Although H. pylori infection is established during early childhood, gastric cancer generally develops in elderly individuals, indicating that oncogenic CagA activity is effectively counteracted at a younger age. Moreover, the eradication of cagA-positive H. pylori cannot cure established gastric cancer, indicating that H. pylori CagA-triggered gastric carcinogenesis proceeds via a hit-and-run mechanism. In addition to its direct oncogenic action, CagA induces BRCAness, a cellular status characterized by replication fork destabilization and loss of error-free homologous recombination-mediated DNA double-strand breaks (DSBs) by inhibiting cytoplasmic-to-nuclear localization of the BRCA1 tumor suppressor. This causes genomic instability that leads to the accumulation of excess mutations in the host cell genome, which may underlie hit-and-run gastric carcinogenesis. The close connection between CagA and BRCAness was corroborated by a recent large-scale case-control study that revealed that the risk of gastric cancer in individuals carrying pathogenic variants of genes that induce BRCAness (such as BRCA1 and BRCA2) dramatically increases upon infection with cagA-positive H. pylori. Accordingly, CagA-mediated BRCAness plays a crucial role in the development of gastric cancer in conjunction with the direct oncogenic action of CagA.
Collapse
Affiliation(s)
- Masanori Hatakeyama
- Institute of Microbial Chemistry, Laboratory of Microbial Carcinogenesis, Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-Ku, Tokyo, 141-0021, Japan.
- Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 060-0815, Japan.
| |
Collapse
|
13
|
Yao B, Xu X, Liu W, Zhang Q, Wang W, Huang Z. The correlation of Th22 and regulatory T cells with Helicobacter pylori infection in patients with chronic gastritis. Immun Inflamm Dis 2023; 11:e768. [PMID: 36705412 PMCID: PMC9846114 DOI: 10.1002/iid3.768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/13/2022] [Accepted: 01/01/2023] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Helicobacter pylori is planted in the human stomach and is the most common cause of chronic gastritis, which produced specific local and systemic humoral immunity, while the associations of these immune responses and H. pylori in the development of chronic gastritis remain unclear. METHODS This study analyzed histology, the number of Th22 and regulatory T (Treg) cells, and the levels of inflammation- and gastritis-related indicators between 22 H. pylori-infected and 24 non-H. pylori-infected chronic gastritis patients by hematoxylin-eosin staining, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR, and flow cytometry analysis. RESULTS This study found that the pathological damage degree of gastric mucosa in H. pylori infection patients was more serious. In the H. pylori-infected patient serum, the gastrin, G-17, interleukins (IL)-22, transforming growth factor (TGF)-β, tumor necrosis factor (TNF)-α, IL-4, and IL-17A levels were notably raised, while the interferon (IFN)-γ level was inhibited, and in gastric mucosa, and except IFN-γ, the IL-22, forkhead box P3 (Foxp3), TNF-α, IL-4, and IL-17A mRNA levels were raised too. The receiver operating characteristic curve analysis indicates serum IL-22, TGF-β, TNF-α, IL-4, and IL-17A are suitable for differential diagnosis of H. pylori infection. In addition, in the peripheral blood, the percentages of the IL-22+ CD4+ and Foxp3+ CD4+ T cells were raised with H. pylori infection. The positive correlation between IL-22 and Foxp3 mRNA levels and the degree of H. pylori colonization and gastric mucositis by Pearson's correlation analysis. CONCLUSIONS Treg and Th22 cells were positively associated with the degree of H. pylori infection and the severity of gastritis. In summary, this study provides an experimental basis for the study of the eradication of H. pylori and the biological mechanism of chronic gastritis.
Collapse
Affiliation(s)
- Biyu Yao
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Xiaoyan Xu
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Weijie Liu
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Qin Zhang
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Wei Wang
- Department of GastroenterologyPeople's Hospital of YuhuanZhejiangTaizhouChina
| | - Zhiming Huang
- Department of GastroenterologyThe First Affiliated Hospital of Wenzhou Medical UniversityZhejiangWenzhouChina
| |
Collapse
|
14
|
Ma PF, Dai Q, Chu J, Zhuo L, Chen Y, Cheng R, Wu C, Yuan LP. 25-hydroxyvitamin D levels in children of different ages and with varying degrees of Helicobacter pylori infection and immunological features. Front Pediatr 2023; 11:1157777. [PMID: 37138564 PMCID: PMC10149923 DOI: 10.3389/fped.2023.1157777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Background Helicobacter pylori (HP) is a major cause of upper digestive tract diseases. However, the relationship between HP infection and 25-hydroxyvitamin D [25(OH)D] levels in children has not been fully elucidated. This study investigated the levels of 25(OH)D in children of different ages and with varying degrees of HP infection and immunological features as well as the correlations between 25(OH)D levels in children infected with HP and their ages and degrees of infection. Materials and methods Ninety-four children who underwent upper digestive endoscopy were divided into an HP-positive group without peptic ulcers (Group A), an HP-positive group with peptic ulcers (Group B) and an HP-negative control group (Group C). The serum levels of 25(OH)D and immunoglobulin and the percentages of lymphocyte subsets were determined. HP colonization, the degree of inflammation, and the degree of activity were further evaluated by HE staining and immunohistochemical staining in gastric mucosal biopsy. Results The 25(OH)D level of the HP-positive groups (50.93 ± 16.51 nmol/L) was significantly lower than that of the HP-negative group (62.89 ± 19.18 nmol/L). The 25(OH)D level of Group B (47.79 ± 14.79 nmol/L) was lower than that of Group A (51.53 ± 17.05 nmol/L) and was significantly lower than that of Group C (62.89 ± 19.18 nmol/L). The 25(OH)D level decreased with increasing age, and there was a significant difference between Group C subjects who were ≤5 years old and those who were aged 6-9 years and ≥10 years. The 25(OH)D level was negatively correlated with HP colonization (r = -0.411, P < 0.01) and the degree of inflammation (r = -0.456, P < 0.01). The percentages of lymphocyte subsets and immunoglobulin levels among Groups A, B and C were not significantly different. Conclusions The 25(OH)D level was negatively correlated with HP colonization and the degree of inflammation. As the age of the children increased, the level of 25(OH)D decreased, and the susceptibility to HP infection increased.
Collapse
Affiliation(s)
- Peng-fei Ma
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Qun Dai
- Department of Pathology, The Third People's Hospital of Hefei, Anhui Medical University Hefei Third Clinical College, Hefei, China
| | - Jing Chu
- Department of Pathology, Children'sHospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Lin Zhuo
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Yi Chen
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Rong Cheng
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Cheng Wu
- Department of Gastroenterology, Children's Hospital of Fudan University at Anhui (Anhui Provincial Children's Hospital), Hefei, China
| | - Li-Ping Yuan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Correspondence: Li-Ping Yuan
| |
Collapse
|