1
|
Ariolli A, Agolini E, Mazza T, Petrizzelli F, Petrini S, D’Oria V, Cudini A, Nardella C, Pesce V, Comparcola D, Cappa M, Fierabracci A. The Putative Role of TIM-3 Variants in Polyendocrine Autoimmunity: Insights from a WES Investigation. Int J Mol Sci 2024; 25:10994. [PMID: 39456777 PMCID: PMC11506967 DOI: 10.3390/ijms252010994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune polyglandular syndrome (APS) comprises a complex association of autoimmune pathological conditions. APS Type 1 originates from loss-of-function mutations in the autoimmune regulator (AIRE) gene. APS2, APS3 and APS4 are linked to specific HLA alleles within the major histocompatibility complex, with single-nucleotide polymorphisms (SNPs) in non-HLA genes also contributing to disease. In general, variability in the AIRE locus and the presence of heterozygous loss-of-function mutations can impact self-antigen presentation in the thymus. In this study, whole-exome sequencing (WES) was performed on a sixteen-year-old female APS3A/B patient to investigate the genetic basis of her complex phenotype. The analysis identified two variants (p.Arg111Trp and p.Thr101Ile) of the hepatitis A virus cell receptor 2 gene (HAVCR2) encoding for the TIM-3 (T cell immunoglobulin and mucin domain 3) protein. These variants were predicted, through in silico analysis, to impact protein structure and stability, potentially influencing the patient's autoimmune phenotype. While confocal microscopy analysis revealed no alteration in TIM-3 fluorescence intensity between the PBMCs isolated from the patient and those of a healthy donor, RT-qPCR showed reduced TIM-3 expression in the patient's unfractionated PBMCs. A screening conducted on a cohort of thirty APS patients indicated that the p.Thr101Ile and p.Arg111Trp mutations were unique to the proband. This study opens the pathway for the search of TIM-3 variants possibly linked to complex autoimmune phenotypes, highlighting the potential of novel variant discovery in contributing to APS classification and diagnosis.
Collapse
Affiliation(s)
- Andrea Ariolli
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy;
| | - Tommaso Mazza
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
- Laboratory of Bioinformatics, Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 70013 San Giovanni Rotondo, Foggia, Italy;
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 70013 San Giovanni Rotondo, Foggia, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (S.P.); (V.D.)
| | - Valentina D’Oria
- Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (S.P.); (V.D.)
| | - Annamaria Cudini
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Caterina Nardella
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Vanessa Pesce
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Donatella Comparcola
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| | - Marco Cappa
- Research Unit Innovative Therapies for Endocrinopathies, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy;
| | - Alessandra Fierabracci
- Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00146 Rome, Italy; (A.A.); (T.M.); (A.C.); (C.N.); (V.P.); (D.C.)
| |
Collapse
|
2
|
Aytekin ES, Cagdas D. APECED and the place of AIRE in the puzzle of the immune network associated with autoimmunity. Scand J Immunol 2023; 98:e13299. [PMID: 38441333 DOI: 10.1111/sji.13299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 03/07/2024]
Abstract
In the last 20 years, discoveries about the autoimmune regulator (AIRE) protein and its critical role in immune tolerance have provided fundamental insights into understanding the molecular basis of autoimmunity. This review provides a comprehensive overview of the effect of AIRE on immunological tolerance and the characteristics of autoimmune diseases in Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED), which is caused by biallelic AIRE mutations. A better understanding of the immunological mechanisms of AIRE deficiency may enlighten immune tolerance mechanisms and new diagnostic and treatment strategies for autoimmune diseases. Considering that not all clinical features of APECED are present in a given follow-up period, the diagnosis is not easy in a patient at the first visit. Longer follow-up and a multidisciplinary approach are essential for diagnosis. It is challenging to prevent endocrine and other organ damage compared with other diseases associated with multiple autoimmunities, such as FOXP3, LRBA, and CTLA4 deficiencies. Unfortunately, no curative therapy like haematopoietic stem cell transplantation or specific immunomodulation is present that is successful in the treatment.
Collapse
Affiliation(s)
- Elif Soyak Aytekin
- Pediatric Allergy and Immunology, Department of Pediatrics, SBU Dr. Sami Ulus Children Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Ihsan Dogramaci Children`s Hospital, Institute of Child Health, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
3
|
Ferré EMN, Yu Y, Oikonomou V, Hilfanova A, Lee CCR, Rosen LB, Burbelo PD, Vazquez SE, Anderson MS, Barocha A, Heller T, Soldatos A, Holland SM, Walkiewicz MA, Lionakis MS. Case report: Discovery of a de novo FAM111B pathogenic variant in a patient with an APECED-like clinical phenotype. Front Immunol 2023; 14:1133387. [PMID: 36875114 PMCID: PMC9981804 DOI: 10.3389/fimmu.2023.1133387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) and poikiloderma in association with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP) are rare inherited syndromes resulting from biallelic pathogenic variants in AIRE and heterozygous pathogenic variants in FAM111B, respectively. The clinical diagnosis of APECED and POIKTMP rely on the development of two or more characteristic disease manifestations that define the corresponding syndromes. We discuss the shared and distinct clinical, radiographic, and histological features between APECED and POIKTMP presented in our patient case and describe his treatment response to azathioprine for POIKTMP-associated hepatitis, myositis, and pneumonitis. Methods Through informed consent and enrollment onto IRB-approved protocols (NCT01386437, NCT03206099) the patient underwent a comprehensive clinical evaluation at the NIH Clinical Center alongside exome sequencing, copy number variation analysis, autoantibody surveys, peripheral blood immunophenotyping, and salivary cytokine analyses. Results We report the presentation and evaluation of a 9-year-old boy who was referred to the NIH Clinical Center with an APECED-like clinical phenotype that included the classic APECED dyad of CMC and hypoparathyroidism. He was found to meet clinical diagnostic criteria for POIKTMP featuring poikiloderma, tendon contractures, myopathy, and pneumonitis, and exome sequencing revealed a de novo c.1292T>C heterozygous pathogenic variant in FAM111B but no deleterious single nucleotide variants or copy number variants in AIRE. Discussion This report expands upon the available genetic, clinical, autoantibody, immunological, and treatment response information on POIKTMP.
Collapse
Affiliation(s)
- Elise M N Ferré
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yunting Yu
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Vasileios Oikonomou
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Anna Hilfanova
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, Medical School of the International European University, Kyiv, Ukraine
| | - Chyi-Chia R Lee
- Laboratory of Pathology, Clinical Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Peter D Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sara E Vazquez
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Amisha Barocha
- Laboratory of Asthma and Lung Inflammation, National Heart Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Magdalena A Walkiewicz
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|