1
|
Daou F, Masante B, Gabetti S, Mochi F, Putame G, Zenobi E, Scatena E, Dell'Atti F, Favero F, Leigheb M, Del Gaudio C, Bignardi C, Massai D, Cochis A, Rimondini L. Unraveling the transcriptome profile of pulsed electromagnetic field stimulation in bone regeneration using a bioreactor-based investigation platform. Bone 2024; 182:117065. [PMID: 38428556 DOI: 10.1016/j.bone.2024.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
INTRODUCTION Human mesenchymal stem cells (hMSCs) sense and respond to biomechanical and biophysical stimuli, yet the involved signaling pathways are not fully identified. The clinical application of biophysical stimulation including pulsed electromagnetic field (PEMF) has gained momentum in musculoskeletal disorders and bone tissue engineering. METHODOLOGY We herein aim to explore the role of PEMF stimulation in bone regeneration by developing trabecular bone-like tissues, and then, culturing them under bone-like mechanical stimulation in an automated perfusion bioreactor combined with a custom-made PEMF stimulator. After selecting the optimal cell seeding and culture conditions for inspecting the effects of PEMF on hMSCs, transcriptomic studies were performed on cells cultured under direct perfusion with and without PEMF stimulation. RESULTS We were able to identify a set of signaling pathways and upstream regulators associated with PEMF stimulation and to distinguish those linked to bone regeneration. Our findings suggest that PEMF induces the immune potential of hMSCs by activating and inhibiting various immune-related pathways, such as macrophage classical activation and MSP-RON signaling in macrophages, respectively, while promoting angiogenesis and osteogenesis, which mimics the dynamic interplay of biological processes during bone healing. CONCLUSIONS Overall, the adopted bioreactor-based investigation platform can be used to investigate the impact of PEMF stimulation on bone regeneration.
Collapse
Affiliation(s)
- Farah Daou
- Dept. of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Novara, Italy
| | - Beatrice Masante
- Dept. of Mechanical and Aerospace Engineering, PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Stefano Gabetti
- Dept. of Mechanical and Aerospace Engineering, PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | | | - Giovanni Putame
- Dept. of Mechanical and Aerospace Engineering, PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Eleonora Zenobi
- Hypatia Research Consortium, Rome, Italy; E. Amaldi Foundation, Rome, Italy
| | - Elisa Scatena
- Hypatia Research Consortium, Rome, Italy; E. Amaldi Foundation, Rome, Italy
| | - Federica Dell'Atti
- Dept. of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Novara, Italy
| | - Francesco Favero
- Dept. of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Novara, Italy
| | - Massimiliano Leigheb
- Dept. of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Novara, Italy; Department of Orthopaedics and Traumatology, "Maggiore della Carità" Hospital, Novara, Italy
| | | | - Cristina Bignardi
- Dept. of Mechanical and Aerospace Engineering, PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Diana Massai
- Dept. of Mechanical and Aerospace Engineering, PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Pisa, Italy
| | - Andrea Cochis
- Dept. of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Novara, Italy
| | - Lia Rimondini
- Dept. of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Università del Piemonte Orientale (UPO), Novara, Italy.
| |
Collapse
|
2
|
Xu Y, Li C, Chen T, Li X, Wu X, Zhang Q, Zhao L. Quantitative Analysis of the Multicomponent and Spectrum-Effect Correlation of the Antispasmodic Activity of Shaoyao-Gancao Decoction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2279404. [PMID: 36507107 PMCID: PMC9734003 DOI: 10.1155/2022/2279404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Shaoyao-Gancao Decoction (SGD) is a well-known classic traditional Chinese medicine (TCM) with antispasmodic, anti-inflammatory, and analgesic effects. This preparation has been widely used to treat spasticity diseases in the clinic. To date, the material basis of SGD remains unclear, and the spectrum-effect correlation of its antispasmodic activity has not been reported yet. In this study, high-performance liquid chromatography (HPLC) was used to establish the fingerprint and determine the multiple components of SGD. The common peaks of fingerprints were evaluated by the similarity with the chromatographic fingerprints of the TCM. Meanwhile, the multiple components were quantified and analysed using the heatmap and box size analysis. Furthermore, data on the antispasmodic effect were extracted through in vitro smooth muscle contraction assay. Grey relational analysis combined with partial least square regression was used to study the spectrum-effect correlation of SGD. Finally, the potential antispasmolytic components were validated using an isolated tissue experiment. The HPLC fingerprint was established, and 20 common peaks were identified. The similarities of 15 batches of SGD were all above 0.965. The HPLC method for simultaneous determination of the multiple components was accurate and reliable. The contents of albiflorin, paeoniflorin, liquiritin, and glycyrrhizic acid were higher than the other components in SGD. The heatmap and box size also showed that X3 (albiflorin), X4 (paeoniflorin), X5 (liquiritin), X11 (liquirtigenin), and X16 (glycyrrhizic acid) could be used as quality indicators in the further establishment of quality standards. The spectrum-effect correlation results indicated that X4, X11, and X16 were highly correlated with antispasmolytic activity. Verification tests showed that paeoniflorin (11.7-29.25 μg/mL) and liquirtigenin (17.19-28.65 μg/mL) could significantly reduce the maximum contractile (P < 0.01). These compounds exerted concentration-dependent spasmolytic effects with the inhibitory response for acetylcholine (Ach)-evoked contraction. Thus, SGD had a significant antispasmodic effect, which resulted from the synergistic activity of its multiple components. These findings can be used for the pharmacodynamics study of SGD and are of great significance for the determination of quality markers and quality control.
Collapse
Affiliation(s)
- Yanli Xu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
| | - Chenxi Li
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
| | - Ting Chen
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
| | - Xiaochun Li
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
| | - Xiaoyu Wu
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed By Gansu Province & MOE of PRC, Lanzhou 730000, China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou 730000, China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou 730000, China
| | - Qili Zhang
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed By Gansu Province & MOE of PRC, Lanzhou 730000, China
| | - Lei Zhao
- Gansu University of Chinese Medicine, Lanzhou 730000, China
- Lanzhou Institute for Food and Drug Control, Lanzhou 730000, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-Constructed By Gansu Province & MOE of PRC, Lanzhou 730000, China
- Key Laboratory of Chemistry and Quality of TCM of the College of Gansu Province, Lanzhou 730000, China
- Gansu Province Engineering Laboratory for TCM Standardization Technology and Popularization, Lanzhou 730000, China
| |
Collapse
|
3
|
Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations. J Clin Med 2022; 11:jcm11237003. [PMID: 36498578 PMCID: PMC9739865 DOI: 10.3390/jcm11237003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis is an increasingly prevalent disease, representing the leading cause of non-traumatic neurological disease in Europe and North America. The most common symptoms include gait deficits, balance and coordination impairments, fatigue, spasticity, dysphagia and an overactive bladder. Neurorehabilitation therapeutic approaches aim to alleviate symptoms and improve the quality of life through promoting positive immunological transformations and neuroplasticity. The purpose of this study is to evaluate the current treatments for the most debilitating symptoms in multiple sclerosis, identify areas for future improvement, and provide a reference guide for practitioners in the field. It analyzes the most cited procedures currently in use for the management of a number of symptoms affecting the majority of patients with multiple sclerosis, from different training routines to cognitive rehabilitation and therapies using physical agents, such as electrostimulation, hydrotherapy, cryotherapy and electromagnetic fields. Furthermore, it investigates the quality of evidence for the aforementioned therapies and the different tests applied in practice to assess their utility. Lastly, the study looks at potential future candidates for the treatment and evaluation of patients with multiple sclerosis and the supposed benefits they could bring in clinical settings.
Collapse
|