1
|
Ellis AK, Hossenbaccus L, Linton S, Botting H, Badawod E, Burrows A, Garvey S. Biphasic anaphylaxis in a Canadian tertiary care centre: an evaluation of incidence and risk factors from electronic health records and telephone interviews. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2025; 21:7. [PMID: 39923108 PMCID: PMC11806842 DOI: 10.1186/s13223-024-00919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/11/2024] [Indexed: 02/10/2025]
Abstract
BACKGROUND Our previous 2007 study reported a 19.4% rate of biphasic anaphylaxis in Kingston, Ontario. Since then, few updates have been published regarding the etiology and risk factors of biphasic anaphylaxis. This study aimed to describe the incidence of and predictors of biphasic anaphylaxis in a single centre through a retrospective evaluation of patients with diagnosed anaphylaxis. METHODS From November 2015 to August 2017, all patients who presented to the emergency department at two hospital sites in Kingston given a diagnosis of "allergic reaction," "anaphylaxis," "drug allergy," or "insect sting allergy," were evaluated. Patients were contacted sometime after ED discharge to obtain consent and confirm symptoms and timing of the reaction. A trained allergist determined if criteria for anaphylaxis were met and categorized the reactions as being uniphasic, biphasic, or non-anaphylactic biphasic. A full medical review of the event ensued, and each type of anaphylactic event was statistically compared. RESULTS Of 138 anaphylactic events identified, 15.94% were biphasic reactions, 79.0% were uniphasic, and 5.07% were classified alternatively as a non-anaphylactic biphasic reaction. The average time of a second reaction was 19.0 h in patients experiencing biphasic reactivity. For biphasic anaphylaxis, the symptom profiles of second reactions were significantly less severe (p = 0.0002) compared with the initial reaction but significantly more severe than non-anaphylactic biphasic events (p < 0.0001).No differences of management were identified between events. CONCLUSION The incidence of biphasic reactions in this cohort was 15.94% and the average second-phase onset was 19.0 h. In biphasic reactivity, it appears that the symptom profile second reaction is less severe compared to the first reaction.
Collapse
Affiliation(s)
- Anne K Ellis
- Department of Medicine, Queen's University, Kingston, ON, Canada.
- Allergy Research Unit, Kingston Health Sciences Center, KGH Site, Kingston, ON, Canada.
- Kingston Health Science Centre, Kingston General Hospital, Watkins 1D, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada.
| | - Lubnaa Hossenbaccus
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Center, KGH Site, Kingston, ON, Canada
| | - Sophia Linton
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston Health Sciences Center, KGH Site, Kingston, ON, Canada
| | - Hannah Botting
- Allergy Research Unit, Kingston Health Sciences Center, KGH Site, Kingston, ON, Canada
| | - Eman Badawod
- Clinical Immunology and Allergy Division, Internal Medicine Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alyssa Burrows
- Allergy Research Unit, Kingston Health Sciences Center, KGH Site, Kingston, ON, Canada
| | - Sarah Garvey
- Allergy Research Unit, Kingston Health Sciences Center, KGH Site, Kingston, ON, Canada
| |
Collapse
|
2
|
Golden DBK, Wang J, Waserman S, Akin C, Campbell RL, Ellis AK, Greenhawt M, Lang DM, Ledford DK, Lieberman J, Oppenheimer J, Shaker MS, Wallace DV, Abrams EM, Bernstein JA, Chu DK, Horner CC, Rank MA, Stukus DR, Burrows AG, Cruickshank H, Golden DBK, Wang J, Akin C, Campbell RL, Ellis AK, Greenhawt M, Lang DM, Ledford DK, Lieberman J, Oppenheimer J, Shaker MS, Wallace DV, Waserman S, Abrams EM, Bernstein JA, Chu DK, Ellis AK, Golden DBK, Greenhawt M, Horner CC, Ledford DK, Lieberman J, Rank MA, Shaker MS, Stukus DR, Wang J. Anaphylaxis: A 2023 practice parameter update. Ann Allergy Asthma Immunol 2024; 132:124-176. [PMID: 38108678 DOI: 10.1016/j.anai.2023.09.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 12/19/2023]
Abstract
This practice parameter update focuses on 7 areas in which there are new evidence and new recommendations. Diagnostic criteria for anaphylaxis have been revised, and patterns of anaphylaxis are defined. Measurement of serum tryptase is important for diagnosis of anaphylaxis and to identify underlying mast cell disorders. In infants and toddlers, age-specific symptoms may differ from older children and adults, patient age is not correlated with reaction severity, and anaphylaxis is unlikely to be the initial reaction to an allergen on first exposure. Different community settings for anaphylaxis require specific measures for prevention and treatment of anaphylaxis. Optimal prescribing and use of epinephrine autoinjector devices require specific counseling and training of patients and caregivers, including when and how to administer the epinephrine autoinjector and whether and when to call 911. If epinephrine is used promptly, immediate activation of emergency medical services may not be required if the patient experiences a prompt, complete, and durable response. For most medical indications, the risk of stopping or changing beta-blocker or angiotensin-converting enzyme inhibitor medication may exceed the risk of more severe anaphylaxis if the medication is continued, especially in patients with insect sting anaphylaxis. Evaluation for mastocytosis, including a bone marrow biopsy, should be considered for adult patients with severe insect sting anaphylaxis or recurrent idiopathic anaphylaxis. After perioperative anaphylaxis, repeat anesthesia may proceed in the context of shared decision-making and based on the history and results of diagnostic evaluation with skin tests or in vitro tests when available, and supervised challenge when necessary.
Collapse
Affiliation(s)
| | - Julie Wang
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Susan Waserman
- Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Canada
| | - Cem Akin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ronna L Campbell
- Department of Emergency Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anne K Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, Canada
| | - Matthew Greenhawt
- Section of Allergy and Immunology, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado
| | - David M Lang
- Department of Allergy and Clinical Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Dennis K Ledford
- James A. Haley VA Hospital, Tampa, Florida; Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jay Lieberman
- The University of Tennessee Health Science Center, Memphis, Tennessee
| | - John Oppenheimer
- Department of Internal Medicine, University of Medicine and Dentistry of New Jersey-Rutgers New Jersey Medical School, Newark, New Jersey
| | - Marcus S Shaker
- Geisel School of Medicine, Hanover, New Hampshire; Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Elissa M Abrams
- Department of Pediatrics and Child Health, Section of Allergy and Clinical Immunology, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy, and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Bernstein Allergy Group and Bernstein Clinical Research Center, Cincinnati, Ohio
| | - Derek K Chu
- Department of Medicine and Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | - Caroline C Horner
- Division of Allergy & Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew A Rank
- Mayo Clinic in Arizona and Phoenix Children's Hospital, Scottsdale and Phoenix, Arizona
| | - David R Stukus
- Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Alyssa G Burrows
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, Canada
| | - Heather Cruickshank
- Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Canada
| | | | - Julie Wang
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cem Akin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ronna L Campbell
- Department of Emergency Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anne K Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, Canada
| | - Matthew Greenhawt
- Section of Allergy and Immunology, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado
| | - David M Lang
- Department of Allergy and Clinical Immunology, Cleveland Clinic, Cleveland, Ohio
| | - Dennis K Ledford
- James A. Haley VA Hospital, Tampa, Florida; Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jay Lieberman
- The University of Tennessee Health Science Center, Memphis, Tennessee
| | - John Oppenheimer
- Department of Internal Medicine, University of Medicine and Dentistry of New Jersey-Rutgers New Jersey Medical School, Newark, New Jersey
| | - Marcus S Shaker
- Geisel School of Medicine, Hanover, New Hampshire; Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Susan Waserman
- Division of Clinical Immunology and Allergy, McMaster University, Hamilton, Canada
| | - Elissa M Abrams
- Department of Pediatrics and Child Health, Section of Allergy and Clinical Immunology, Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Jonathan A Bernstein
- Division of Rheumatology, Allergy, and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio; Bernstein Allergy Group and Bernstein Clinical Research Center, Cincinnati, Ohio
| | - Derek K Chu
- Department of Medicine and Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Canada
| | - Anne K Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, Canada
| | | | - Matthew Greenhawt
- Section of Allergy and Immunology, Children's Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, Denver, Colorado
| | - Caroline C Horner
- Division of Allergy & Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Dennis K Ledford
- James A. Haley VA Hospital, Tampa, Florida; Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jay Lieberman
- The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Matthew A Rank
- Mayo Clinic in Arizona and Phoenix Children's Hospital, Scottsdale and Phoenix, Arizona
| | - Marcus S Shaker
- Geisel School of Medicine, Hanover, New Hampshire; Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - David R Stukus
- Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Julie Wang
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|