1
|
Sella N, Pettenuzzo T, Congedi S, Bisi M, Gianino G, De Carolis A, Bertoncello CA, Roccaforte M, Zarantonello F, Persona P, Petranzan E, Roca G, Biamonte E, Carron M, Dell'Amore A, Rea F, Boscolo A, Navalesi P. Early Prone Positioning As a Rescue Therapy for Moderate-to-severe Primary Graft Dysfunction After Bilateral Lung Transplant. J Cardiothorac Vasc Anesth 2025; 39:479-488. [PMID: 39675928 DOI: 10.1053/j.jvca.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/24/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVES Primary graft dysfunction (PGD) affects survival after lung transplant (LT). The current hypothesis was that prone positioning (PP), proposed as a rescue maneuver to treat refractory hypoxemia due to PGD, may improve LT outcomes, especially when applied early. DESIGN Bilateral LT recipients developing moderate-to-severe PGD within 24 hours from intensive care unit admission were enrolled. From January 2020 to November 2021, patients developing PGD after LT were turned prone between 24 and 48 hours after diagnosis, only in case of radiological or oxygenation worsening ("late PP" group). After November 2021, patients were routinely turned prone within 24 hours from PGD diagnosis ("early PP"). A propensity score-weighted analysis, adjusted for clinically relevant covariates, was applied. SETTING Intensive care unit. PARTICIPANTS Bilateral LT recipients. INTERVENTIONS Early PP, late PP, or supine position. MEASUREMENTS AND MAIN RESULTS 130 LT patients were screened and 67 were enrolled. A total of 25 (37%) recipients were treated in the supine position, 24 (36%) in early PP, and 18 (27%) in late PP. After propensity score weighting, both supine treatment (estimated effect for 1 ventilator-free day = 8.23, standard error: 2.97, p = 0.007) and early PP treatment (estimated effect = 9.42, standard error: 2.59, p < 0.001) were associated with greater 28-day ventilator-free days than late PP treatment (reference). Compared with late PP, early PP was also associated with better oxygenation, driving pressure, and static respiratory system compliance. Compared with supine recipients, the early PP group showed better oxygenation at 72 hours after PGD diagnosis. CONCLUSIONS Early PP in LT recipients with moderate-to-severe PGD seems to be associated with better 28-day ventilator-free days, oxygenation, and driving pressure than late PP.
Collapse
Affiliation(s)
- Nicolò Sella
- Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy
| | - Tommaso Pettenuzzo
- Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy
| | | | - Maria Bisi
- Department of Medicine, University of Padua, Padua, Italy
| | - Giulio Gianino
- Department of Medicine, University of Padua, Padua, Italy
| | - Agnese De Carolis
- Department of Anesthesia, Critical Care and Emergency, University of Milan, Milan, Italy
| | | | | | | | - Paolo Persona
- Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy
| | - Enrico Petranzan
- Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy
| | - Gabriella Roca
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Eugenio Biamonte
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Michele Carron
- Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy; Department of Medicine, University of Padua, Padua, Italy
| | - Andrea Dell'Amore
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy
| | - Annalisa Boscolo
- Anesthesia and Intensive Care, University Hospital of Padua, Padua, Italy; Department of Medicine, University of Padua, Padua, Italy; Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, Padua, Italy.
| | - Paolo Navalesi
- Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
2
|
Pettenuzzo T, Ocagli H, Sella N, De Cassai A, Zarantonello F, Congedi S, Chiaruttini MV, Pistollato E, Nardelli M, Biscaro M, Bassi M, Coniglio G, Faccioli E, Rea F, Gregori D, Navalesi P, Boscolo A. Intraoperative extracorporeal support for lung transplant: a systematic review and network meta-analysis. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:81. [PMID: 39695889 DOI: 10.1186/s44158-024-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND In the last decades, veno-arterial extracorporeal membrane oxygenation (V-A ECMO) has been gaining in popularity for intraoperative support during lung transplant (LT), being advocated for routinely use also in uncomplicated cases. Compared to off-pump strategy and, secondarily, to traditional cardiopulmonary bypass (CPB), V-A ECMO seems to offer a better hemodynamic stability and oxygenation, while data regarding blood product transfusions, postoperative recovery, and mortality remain unclear. This systematic review and network meta-analysis aims to evaluate the comparative efficacy and safety of V-A ECMO and CPB as compared to OffPump strategy during LT. METHODS A comprehensive literature search was conducted across multiple databases (PubMed Embase, Cochrane, Scopus) and was updated in February 2024. A Bayesian network meta-analysis (NMA), with a fixed-effect approach, was performed to compare outcomes, such as intraoperative needing of blood products, invasive mechanical ventilation (IMV) duration, intensive care unit (ICU) length of stay (LOS), surgical duration, needing of postoperative ECMO, and mortality, across different supports (i.e., intraoperative V-A (default (d) or rescue (r)) ECMO, CPB, or OffPump). FINDINGS Twenty-seven observational studies (6113 patients) were included. As compared to OffPump surgery, V-A ECMOd, V-A ECMOr, and CPB recorded a higher consumption of all blood products, longer IMV durations, prolonged ICU LOS, surgical duration, and higher mortalities. Comparing different extracorporeal supports, V-A ECMOd and, secondarily, V-A ECMOr overperformed CPB in nearly all above mentioned outcomes, except for RBC transfusions. The lowest rate of postoperative ECMO was recorded after OffPump surgery, while no differences were found comparing different extracorporeal supports. Finally, older age, male gender, and body mass index ≥ 25 kg/m2 negatively impacted on RBC transfusions, ICU LOS, surgical duration, need of postoperative ECMO, and mortality, regardless of the intraoperative extracorporeal support investigated. INTERPRETATION This comparative network meta-analysis highlights that OffPump overperformed ECMO and CPB in all outcomes of interest, while, comparing different extracorporeal supports, V-A ECMOd and, secondarily, V-A ECMOr overperformed CPB in nearly all above mentioned outcomes, except for RBC transfusions. Older age, male gender, and higher BMI negatively affect several outcomes across different intraoperative strategies, regardless of the intraoperative extracorporeal support investigated. Future prospective studies are necessary to optimize and standardize the intraoperative management of LT.
Collapse
Affiliation(s)
- Tommaso Pettenuzzo
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | - Honoria Ocagli
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Nicolò Sella
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | - Alessandro De Cassai
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | | | - Sabrina Congedi
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Maria Vittoria Chiaruttini
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Elisa Pistollato
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Marco Nardelli
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Martina Biscaro
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Mara Bassi
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Giordana Coniglio
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
| | - Eleonora Faccioli
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Paolo Navalesi
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy.
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy.
| | - Annalisa Boscolo
- Institute of Anaesthesia and Intensive Care, Padua University Hospital, Padua, Italy
- Department of Medicine (DIMED), Section of Anaesthesiology and Intensive Care, University of Padua, Padua, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padova, Italy
| |
Collapse
|
3
|
Suilik HA, Al-Shammari AS, Soliman Y, Suilik MA, Naeim KA, Nawlo A, Abuelazm M. Efficacy of tacrolimus versus cyclosporine after lung transplantation: an updated systematic review, meta-analysis, and trial sequential analysis of randomized controlled trials. Eur J Clin Pharmacol 2024; 80:1923-1935. [PMID: 39261378 DOI: 10.1007/s00228-024-03750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Little data supports using tacrolimus versus cyclosporin for immunosuppression concerning acute rejection and bronchiolitis obliterans syndrome/Chronic Lung Allograft Dysfunction CLAD complications following lung transplantation (LTx). Our goal was to evaluate the use of tacrolimus versus cyclosporine in preventing these complications after LTx. METHODS We included randomized controlled trials (RCTs) by searching PubMed, Web of Science, SCOPUS, and Cochrane through January 10th, 2024. We pooled dichotomous data using the risk ratio (RR) and continuous data using the mean difference (MD) with a 95% confidence interval (CI). RESULTS We included Four RCTs with a total of 677 patients. Tacrolimus was significantly associated with decreased risk of acute rejection (RR: 1.21, 95% CI [1.03, 1.42], I2 = 25%, P = 0.02) compared with cyclosporine, bronchiolitis obliterans syndrome/CLAD (RR: 1.87, 95% CI [1.26, 2.77], I2 = 52%, P = 0.002), and treatment withdrawal (RR: 3.11, 95% CI [2.06, 4.70], I2 = 0%, P = < 0.00001). However, tacrolimus significantly increased the risk of new-onset diabetes (RR: 0.33, 95% CI [0.12, 0.91], I2 = 0%, P = 0.03), and kidney dysfunction (RR: 0.79, 95% CI [0.66, 0.93], I2 = 0%, P = 0.006). In contrast, there was no difference in the incidence of all-cause mortality (RR: 91, 95% CI [0.68, 1.22], I2 = 0%, P = 0.53), arterial hypertension (RR: 2.40, 95% CI [0.41, 14.21], I2 = 92%, P = 0.33), and new cancer (RR: 1.57, 95% CI [0.79, 3.10], I2 = 4%, P = 0.20). CONCLUSION Tacrolimus has decreased acute rejection episodes and CLAD rate than cyclosporine, but it increased the risk of new-onset diabetes and kidney dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | - Ahmad Nawlo
- Department of Infectious Disease, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | |
Collapse
|
4
|
Congedi S, Peralta A, Muraro L, Biscaro M, Pettenuzzo T, Sella N, Crociani S, Tagne AAS, Caregnato I, Monteleone F, Rossi E, Roca G, Manfrin S, Marinello S, Mazzitelli M, Dell'Amore A, Cattelan A, Rea F, Navalesi P, Boscolo A. Gram-negative bacterial colonizations before bilateral lung transplant. The impact of 'targeted' versus 'standard' surgical prophylaxis. BMC Infect Dis 2024; 24:307. [PMID: 38481174 PMCID: PMC10935849 DOI: 10.1186/s12879-024-09199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Infections are one of the most common causes of death after lung transplant (LT). However, the benefit of 'targeted' prophylaxis in LT recipients pre-colonized by Gram-negative (GN) bacteria is still unclear. METHODS All consecutive bilateral LT recipients admitted to the Intensive Care Unit of the University Hospital of Padua (February 2016-2023) were retrospectively screened. Only patients with pre-existing GN bacterial isolations were enrolled and analyzed according to the antimicrobial surgical prophylaxis ('standard' vs. 'targeted' on the preoperative bacterial isolation). RESULTS One hundred eighty-one LT recipients were screened, 46 enrolled. Twenty-two (48%) recipients were exposed to 'targeted' prophylaxis, while 24 (52%) to 'standard' prophylaxis. Overall prevalence of postoperative multi-drug resistant (MDR) GN bacteria isolation was 65%, with no differences between the two surgical prophylaxis (p = 0.364). Eleven (79%) patients treated with 'standard' prophylaxis and twelve (75%) with 'targeted' therapy reconfirmed the preoperative GN pathogen (p = 0.999). The prevalence of postoperative infections due to MDR GN bacteria was 50%. Of these recipients, 4 belonged to the 'standard' and 11 to the 'targeted' prophylaxis (p = 0.027). CONCLUSIONS The administration of a 'targeted' prophylaxis in LT pre-colonized recipients seemed not to prevent the occurrence of postoperative MDR GN infections.
Collapse
Affiliation(s)
- Sabrina Congedi
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Luisa Muraro
- Azienda Ospedale - Univerisità Padova, Padova, Italy
| | - Martina Biscaro
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Nicolò Sella
- Azienda Ospedale - Univerisità Padova, Padova, Italy.
| | - Silvia Crociani
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Ida Caregnato
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | - Elisa Rossi
- Azienda Ospedale - Univerisità Padova, Padova, Italy
| | | | - Silvia Manfrin
- Department of Medicine (DIMED), University of Padua, Padua, Italy
| | | | | | | | | | - Federico Rea
- Azienda Ospedale - Univerisità Padova, Padova, Italy
| | - Paolo Navalesi
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Azienda Ospedale - Univerisità Padova, Padova, Italy
| | - Annalisa Boscolo
- Department of Medicine (DIMED), University of Padua, Padua, Italy
- Azienda Ospedale - Univerisità Padova, Padova, Italy
| |
Collapse
|
5
|
Boscolo A, Cattelan A, Marinello S, Medici F, Pettenon G, Congedi S, Sella N, Presa N, Pistollato E, Silvestrin S, Biscaro M, Muraro L, Peralta A, Mazzitelli M, Dell’Amore A, Rea F, Navalesi P. Fungal Infections and Colonization after Bilateral Lung Transplant: A Six-Year Single-Center Experience. J Fungi (Basel) 2024; 10:80. [PMID: 38276026 PMCID: PMC10817539 DOI: 10.3390/jof10010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Fungal infections (FIs) are one of the leading causes of morbidity and mortality within the first year of lung transplant (LT) in LT recipients (LTRs). Their prompt identification and treatment are crucial for a favorable LTR outcome. The objectives of our study were to assess (i) the FI incidence and colonization during the first year after a bilateral LT, (ii) the risk factors associated with FI and colonization, and (iii) the differences in fungal incidence according to the different prophylactic strategies. All bilateral LTRs admitted to the intensive care unit of Padua University Hospital were retrospectively screened, excluding patients <18 years of age, those who had been re-transplanted, and those who had received ventilation and/or extracorporeal membrane oxygenation before LT. Overall, 157 patients were included. A total of 13 (8%) patients developed FI, and 36 (23%) developed colonization, which was mostly due to Aspergillus spp. We did not identify independent risk factors for FI. Groups of patients receiving different prophylactic strategies reported a similar incidence of both FI and colonization. The incidence of FI and fungal colonization was 8% and 23%, respectively, with no differences between different antifungal prophylaxes or identified predisposing factors. Further studies with larger numbers are needed to confirm our results.
Collapse
Affiliation(s)
- Annalisa Boscolo
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Annamaria Cattelan
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Serena Marinello
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Francesca Medici
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Giovanni Pettenon
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Sabrina Congedi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Nicolò Sella
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Nicolò Presa
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Elisa Pistollato
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Stefano Silvestrin
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Martina Biscaro
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
| | - Luisa Muraro
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Arianna Peralta
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, Padua University Hospital, 35128 Padua, Italy; (A.C.); (S.M.); (N.P.)
| | - Andrea Dell’Amore
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Federico Rea
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35122 Padua, Italy; (S.S.); (A.D.); (F.R.)
| | - Paolo Navalesi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.B.); (F.M.); (S.C.); (E.P.); (M.B.); (P.N.)
- Anesthesia and Intensive Care Unit, Padua University Hospital, 35128 Padua, Italy (L.M.); (A.P.)
| |
Collapse
|
6
|
Boscolo A, Sella N, Pettenuzzo T, Pistollato E, Calabrese F, Gregori D, Cammarota G, Dres M, Rea F, Navalesi P. Diaphragm Dysfunction Predicts Weaning Outcome after Bilateral Lung Transplant. Anesthesiology 2024; 140:126-136. [PMID: 37552079 DOI: 10.1097/aln.0000000000004729] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Diaphragm dysfunction and its effects on outcomes of ventilator weaning have been evaluated in mixed critical care populations using diaphragm thickening fraction (the ratio of the difference between ultrasound diaphragm thickness at end-inspiration and end-expiration to diaphragm thickness at end-expiration) or neuroventilatory efficiency (the ratio of tidal volume and peak electrical activity of the diaphragm). Such data are not available in bilateral-lung transplant recipients. The authors hypothesized that (1) diaphragm dysfunction, as defined by a diaphragm thickening fraction less than 29%, is more likely to occur in difficult weaning; (2) diaphragm thickening fraction and neuroventilatory efficiency predict weaning outcome; and (3) duration of mechanical ventilation before the first spontaneous breathing trial is associated with diaphragm dysfunction. METHODS Adult bilateral-lung transplant patients admitted to the intensive care unit were screened at the time of the first spontaneous breathing trial (pressure-support of 5 cm H2O and 0 positive end-expiratory pressure). At the fifth minute, diaphragm thickening fraction and neuroventilatory efficiency were measured during three respiratory cycles. Weaning was classified as simple, difficult, or prolonged (successful extubation at the first spontaneous breathing trial, within three or after three spontaneous breathing trials, respectively). RESULTS Forty-four subjects were enrolled. Diaphragm dysfunction occurred in 14 subjects (32%), all of whom had difficult weaning (78% of the subgroup of 18 patients experiencing difficult weaning). Both diaphragm thickening fraction (24 [20 to 29] vs. 39 [35 to 45]%) and neuroventilatory efficiency (34 [26 to 45] vs. 55 [43 to 62] ml/µV) were lower in difficult weaning (both P < 0.001). The areas under the receiver operator curve predicting difficult weaning were 0.88 (95% CI, 0.73 to 0.99) for diaphragm thickening fraction and 0.85 (95% CI, 0.71 to 0.95) for neuroventilatory efficiency. The duration of ventilation demonstrated a linear inverse correlation with both diaphragm thickening fraction and neuroventilatory efficiency. CONCLUSIONS Diaphragm dysfunction is common after bilateral-lung transplantation and associated with difficult weaning. In such patients, average values for diaphragm thickening fraction and neuroventilatory efficiency were reduced compared to patients with simple weaning. Both parameters showed similar accuracy for predicting success of ventilator weaning, demonstrating an inverse relationship with duration of ventilation. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Annalisa Boscolo
- Department of Medicine, and Thoracic Surgery and Lung Transplant Unit, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, Padua, Italy; Institute of Anesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | - Nicolò Sella
- Institute of Anesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | - Tommaso Pettenuzzo
- Institute of Anesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | | | - Fiorella Calabrese
- Thoracic Surgery and Lung Transplant Unit, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, Padua, Italy
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, Padua, Italy
| | | | - Martin Dres
- Department of Critical Care, St. Michael's Hospital and the Critical Illness and Injury Research Center, Keenan Research Center for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| | - Federico Rea
- Thoracic Surgery and Lung Transplant Unit, Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padua, Padua, Italy
| | - Paolo Navalesi
- Department of Medicine, University of Padua, Padua, Italy; Institute of Anesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| |
Collapse
|