1
|
Zhou P, Zhou Q, Xiao X, Fan X, Zou Y, Sun L, Jiang J, Song D, Chen L. Machine Learning in Solid-State Hydrogen Storage Materials: Challenges and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413430. [PMID: 39703108 DOI: 10.1002/adma.202413430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/10/2024] [Indexed: 12/21/2024]
Abstract
Machine learning (ML) has emerged as a pioneering tool in advancing the research application of high-performance solid-state hydrogen storage materials (HSMs). This review summarizes the state-of-the-art research of ML in resolving crucial issues such as low hydrogen storage capacity and unfavorable de-/hydrogenation cycling conditions. First, the datasets, feature descriptors, and prevalent ML models tailored for HSMs are described. Specific examples include the successful application of ML in titanium-based, rare-earth-based, solid solution, magnesium-based, and complex HSMs, showcasing its role in exploiting composition-structure-property relationships and designing novel HSMs for specific applications. One of the representative ML works is the single-phase Ti-based HSM with superior cost-effective and comprehensive properties, tailored to fuel cell hydrogen feeding system at ambient temperature and pressure through high-throughput composition-performance scanning. More importantly, this review also identifies and critically analyzes the key challenges faced by ML in this domain, including poor data quality and availability, and the balance between model interpretability and accuracy, together with feasible countermeasures suggested to ameliorate these problems. In summary, this work outlines a roadmap for enhancing ML's utilization in solid-state hydrogen storage research, promoting more efficient and sustainable energy storage solutions.
Collapse
Affiliation(s)
- Panpan Zhou
- College of Materials Science and Engineering, Hohai University, Changzhou, Jiangsu, 213200, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qianwen Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xuezhang Xiao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- School of Advanced Energy, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yongjin Zou
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, China
| | - Jinghua Jiang
- College of Materials Science and Engineering, Hohai University, Changzhou, Jiangsu, 213200, China
| | - Dan Song
- College of Materials Science and Engineering, Hohai University, Changzhou, Jiangsu, 213200, China
| | - Lixin Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of Hydrogen Storage and Transportation Technology of Zhejiang Province, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
2
|
Cheungpasitporn W, Thongprayoon C, Kashani KB. Advances in critical care nephrology through artificial intelligence. Curr Opin Crit Care 2024; 30:533-541. [PMID: 39248074 DOI: 10.1097/mcc.0000000000001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW This review explores the transformative advancement, potential application, and impact of artificial intelligence (AI), particularly machine learning (ML) and large language models (LLMs), on critical care nephrology. RECENT FINDINGS AI algorithms have demonstrated the ability to enhance early detection, improve risk prediction, personalize treatment strategies, and support clinical decision-making processes in acute kidney injury (AKI) management. ML models can predict AKI up to 24-48 h before changes in serum creatinine levels, and AI has the potential to identify AKI sub-phenotypes with distinct clinical characteristics and outcomes for targeted interventions. LLMs and generative AI offer opportunities for automated clinical note generation and provide valuable patient education materials, empowering patients to understand their condition and treatment options better. To fully capitalize on its potential in critical care nephrology, it is essential to confront the limitations and challenges of AI implementation, including issues of data quality, ethical considerations, and the necessity for rigorous validation. SUMMARY The integration of AI in critical care nephrology has the potential to revolutionize the management of AKI and continuous renal replacement therapy. While AI holds immense promise for improving patient outcomes, its successful implementation requires ongoing training, education, and collaboration among nephrologists, intensivists, and AI experts.
Collapse
Affiliation(s)
- Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic Health System, Mankato
| | - Kianoush B Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Tran TT, Yun G, Kim S. Artificial intelligence and predictive models for early detection of acute kidney injury: transforming clinical practice. BMC Nephrol 2024; 25:353. [PMID: 39415082 PMCID: PMC11484428 DOI: 10.1186/s12882-024-03793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
Acute kidney injury (AKI) presents a significant clinical challenge due to its rapid progression to kidney failure, resulting in serious complications such as electrolyte imbalances, fluid overload, and the potential need for renal replacement therapy. Early detection and prediction of AKI can improve patient outcomes through timely interventions. This review was conducted as a narrative literature review, aiming to explore state-of-the-art models for early detection and prediction of AKI. We conducted a comprehensive review of findings from various studies, highlighting their strengths, limitations, and practical considerations for implementation in healthcare settings. We highlight the potential benefits and challenges of their integration into routine clinical care and emphasize the importance of establishing robust early-detection systems before the introduction of artificial intelligence (AI)-assisted prediction models. Advances in AI for AKI detection and prediction are examined, addressing their clinical applicability, challenges, and opportunities for routine implementation.
Collapse
Affiliation(s)
- Tu T Tran
- Department of Internal Medicine, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
- Department of Nephro-Urology and Dialysis, Thai Nguyen National Hospital, Thai Nguyen, Vietnam
| | - Giae Yun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
4
|
Song Y, Zhai W, Ma S, Wu Y, Ren M, Van den Eynde J, Nardi P, Pang PYK, Ali JM, Han J, Guo Z. Machine learning-based prediction of off-pump coronary artery bypass grafting-associated acute kidney injury. J Thorac Dis 2024; 16:4535-4542. [PMID: 39144311 PMCID: PMC11320255 DOI: 10.21037/jtd-24-711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Background The cardiac surgery-associated acute kidney injury (CSA-AKI) occurs in up to 1 out of 3 patients. Off-pump coronary artery bypass grafting (OPCABG) is one of the major cardiac surgeries leading to CSA-AKI. Early identification and timely intervention are of clinical significance for CSA-AKI. In this study, we aimed to establish a prediction model of off-pump coronary artery bypass grafting-associated acute kidney injury (OPCABG-AKI) after surgery based on machine learning methods. Methods The preoperative and intraoperative data of 1,041 patients who underwent OPCABG in Chest Hospital, Tianjin University from June 1, 2021 to April 30, 2023 were retrospectively collected. The definition of OPCABG-AKI was based on the 2012 Kidney Disease Improving Global Outcomes (KDIGO) criteria. The baseline data and intraoperative time series data were included in the dataset, which were preprocessed separately. A total of eight machine learning models were constructed based on the baseline data: logistic regression (LR), gradient-boosting decision tree (GBDT), eXtreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), random forest (RF), support vector machine (SVM), k-nearest neighbor (KNN), and decision tree (DT). The intraoperative time series data were extracted using a long short-term memory (LSTM) deep learning model. The baseline data and intraoperative features were then integrated through transfer learning and fused into each of the eight machine learning models for training. Based on the calculation of accuracy and area under the curve (AUC) of the prediction model, the best model was selected to establish the final OPCABG-AKI risk prediction model. The importance of features was calculated and ranked by DT model, to identify the main risk factors. Results Among 701 patients included in the study, 73 patients (10.4%) developed OPCABG-AKI. The GBDT model was shown to have the best predictions, both based on baseline data only (AUC =0.739, accuracy: 0.943) as well as based on baseline and intraoperative datasets (AUC =0.861, accuracy: 0.936). The ranking of importance of features of the GBDT model showed that use of insulin aspart was the most important predictor of OPCABG-AKI, followed by use of acarbose, spironolactone, alfentanil, dezocine, levosimendan, clindamycin, history of myocardial infarction, and gender. Conclusions A GBDT-based model showed excellent performance for the prediction of OPCABG-AKI. The fusion of preoperative and intraoperative data can improve the accuracy of predicting OPCABG-AKI.
Collapse
Affiliation(s)
- Yuezi Song
- Department of Anesthesiology, Chest Hospital, Tianjin University, Tianjin, China
| | - Wenqian Zhai
- Department of Anesthesiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergencies and Critical Care, Tianjin, China
| | - Songnan Ma
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yubo Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Min Ren
- Tianjin Institute of Cardiovascular Disease, Tianjin, China
| | | | - Paolo Nardi
- Department of Cardiac Surgery, Tor Vergata University Hospital of Rome, Rome, Italy
| | - Philip Y. K. Pang
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore, Singapore
| | - Jason M. Ali
- Department of Cardiothoracic Surgery, Royal Papworth Hospital, Cambridge, UK
| | - Jiange Han
- Department of Anesthesiology, Chest Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Emergencies and Critical Care, Tianjin, China
| | - Zhigang Guo
- Tianjin Key Laboratory of Cardiovascular Emergencies and Critical Care, Tianjin, China
- Department of Cardiovascular Surgery, Chest Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Cheungpasitporn W, Thongprayoon C, Kashani KB. Artificial intelligence and machine learning's role in sepsis-associated acute kidney injury. Kidney Res Clin Pract 2024; 43:417-432. [PMID: 38934028 PMCID: PMC11237333 DOI: 10.23876/j.krcp.23.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a serious complication in critically ill patients, resulting in higher mortality, morbidity, and cost. The intricate pathophysiology of SA-AKI requires vigilant clinical monitoring and appropriate, prompt intervention. While traditional statistical analyses have identified severe risk factors for SA-AKI, the results have been inconsistent across studies. This has led to growing interest in leveraging artificial intelligence (AI) and machine learning (ML) to predict SA-AKI better. ML can uncover complex patterns beyond human discernment by analyzing vast datasets. Supervised learning models like XGBoost and RNN-LSTM have proven remarkably accurate at predicting SA-AKI onset and subsequent mortality, often surpassing traditional risk scores. Meanwhile, unsupervised learning reveals clinically relevant sub-phenotypes among diverse SA-AKI patients, enabling more tailored care. In addition, it potentially optimizes sepsis treatment to prevent SA-AKI through continual refinement based on patient outcomes. However, utilizing AI/ML presents ethical and practical challenges regarding data privacy, algorithmic biases, and regulatory compliance. AI/ML allows early risk detection, personalized management, optimal treatment strategies, and collaborative learning for SA-AKI management. Future directions include real-time patient monitoring, simulated data generation, and predictive algorithms for timely interventions. However, a smooth transition to clinical practice demands continuous model enhancements and rigorous regulatory oversight. In this article, we outlined the conventional methods used to address SA-AKI and explore how AI and ML can be applied to diagnose and manage SA-AKI, highlighting their potential to revolutionize SA-AKI care.
Collapse
Affiliation(s)
- Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kianoush B Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Körner A, Sailer B, Sari-Yavuz S, Haeberle HA, Mirakaj V, Bernard A, Rosenberger P, Koeppen M. Explainable Boosting Machine approach identifies risk factors for acute renal failure. Intensive Care Med Exp 2024; 12:55. [PMID: 38874694 PMCID: PMC11178719 DOI: 10.1186/s40635-024-00639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Risk stratification and outcome prediction are crucial for intensive care resource planning. In addressing the large data sets of intensive care unit (ICU) patients, we employed the Explainable Boosting Machine (EBM), a novel machine learning model, to identify determinants of acute kidney injury (AKI) in these patients. AKI significantly impacts outcomes in the critically ill. METHODS An analysis of 3572 ICU patients was conducted. Variables such as average central venous pressure (CVP), mean arterial pressure (MAP), age, gender, and comorbidities were examined. This analysis combined traditional statistical methods with the EBM to gain a detailed understanding of AKI risk factors. RESULTS Our analysis revealed chronic kidney disease, heart failure, arrhythmias, liver disease, and anemia as significant comorbidities influencing AKI risk, with liver disease and anemia being particularly impactful. Surgical factors were also key; lower GI surgery heightened AKI risk, while neurosurgery was associated with a reduced risk. EBM identified four crucial variables affecting AKI prediction: anemia, liver disease, and average CVP increased AKI risk, whereas neurosurgery decreased it. Age was a progressive risk factor, with risk escalating after the age of 50 years. Hemodynamic instability, marked by a MAP below 65 mmHg, was strongly linked to AKI, showcasing a threshold effect at 60 mmHg. Intriguingly, average CVP was a significant predictor, with a critical threshold at 10.7 mmHg. CONCLUSION Using an Explainable Boosting Machine enhance the precision in AKI risk factors in ICU patients, providing a more nuanced understanding of known AKI risks. This approach allows for refined predictive modeling of AKI, effectively overcoming the limitations of traditional statistical models.
Collapse
Affiliation(s)
- Andreas Körner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Benjamin Sailer
- Medical Data Integration Center, University Hospital Tübingen, Tübingen, Germany
| | - Sibel Sari-Yavuz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Helene A Haeberle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Valbona Mirakaj
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Alice Bernard
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| |
Collapse
|
7
|
Sun R, Li S, Wei Y, Hu L, Xu Q, Zhan G, Yan X, He Y, Wang Y, Li X, Luo A, Zhou Z. Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study. Int J Surg 2024; 110:2950-2962. [PMID: 38445452 DOI: 10.1097/js9.0000000000001237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Early identification of patients at high-risk of postoperative acute kidney injury (AKI) can facilitate the development of preventive approaches. This study aimed to develop prediction models for postoperative AKI in noncardiac surgery using machine learning algorithms. The authors also evaluated the predictive performance of models that included only preoperative variables or only important predictors. MATERIALS AND METHODS Adult patients undergoing noncardiac surgery were retrospectively included in the study (76 457 patients in the discovery cohort and 11 910 patients in the validation cohort). AKI was determined using the KDIGO criteria. The prediction model was developed using 87 variables (56 preoperative variables and 31 intraoperative variables). A variety of machine learning algorithms were employed to develop the model, including logistic regression, random forest, extreme gradient boosting, and gradient boosting decision trees. The performance of different models was compared using the area under the receiver operating characteristic curve (AUROC). Shapley Additive Explanations (SHAP) analysis was employed for model interpretation. RESULTS The patients in the discovery cohort had a median age of 52 years (IQR: 42-61 years), and 1179 patients (1.5%) developed AKI after surgery. The gradient boosting decision trees algorithm showed the best predictive performance using all available variables, or only preoperative variables. The AUROCs were 0.849 (95% CI: 0.835-0.863) and 0.828 (95% CI: 0.813-0.843), respectively. The SHAP analysis showed that age, surgical duration, preoperative serum creatinine, and gamma-glutamyltransferase, as well as American Society of Anesthesiologists physical status III were the most important five features. When gradually reducing the features, the AUROCs decreased from 0.852 (including the top 40 features) to 0.839 (including the top 10 features). In the validation cohort, the authors observed a similar pattern regarding the models' predictive performance. CONCLUSIONS The machine learning models the authors developed had satisfactory predictive performance for identifying high-risk postoperative AKI patients. Furthermore, the authors found that model performance was only slightly affected when only preoperative variables or only the most important predictive features were included.
Collapse
Affiliation(s)
- Rao Sun
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| | - Shiyong Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| | - Yuna Wei
- Yidu Cloud Technology Inc, Beijing, People's Republic of China
| | - Liu Hu
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Qiaoqiao Xu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| | - Gaofeng Zhan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| | - Xu Yan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| | - Yuqin He
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| | - Yao Wang
- Yidu Cloud Technology Inc, Beijing, People's Republic of China
| | - Xinhua Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| | - Ailin Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| | - Zhiqiang Zhou
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia
| |
Collapse
|
8
|
Musiał K, Stojanowski J, Augustynowicz M, Miśkiewicz-Migoń I, Kałwak K, Ussowicz M. Assessment of Risk Factors for Acute Kidney Injury with Machine Learning Tools in Children Undergoing Hematopoietic Stem Cell Transplantation. J Clin Med 2024; 13:2266. [PMID: 38673539 PMCID: PMC11050842 DOI: 10.3390/jcm13082266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Although acute kidney injury (AKI) is a common complication in patients undergoing hematopoietic stem cell transplantation (HSCT), its prophylaxis remains a clinical challenge. Attempts at prevention or early diagnosis focus on various methods for the identification of factors influencing the incidence of AKI. Our aim was to test the artificial intelligence (AI) potential in the construction of a model defining parameters predicting AKI development. Methods: The analysis covered the clinical data of children followed up for 6 months after HSCT. Kidney function was assessed before conditioning therapy, 24 h after HSCT, 1, 2, 3, 4, and 8 weeks after transplantation, and, finally, 3 and 6 months post-transplant. The type of donor, conditioning protocol, and complications were incorporated into the model. Results: A random forest classifier (RFC) labeled the 93 patients according to presence or absence of AKI. The RFC model revealed that the values of the estimated glomerular filtration rate (eGFR) before and just after HSCT, as well as methotrexate use, acute graft versus host disease (GvHD), and viral infection occurrence, were the major determinants of AKI incidence within the 6-month post-transplant observation period. Conclusions: Artificial intelligence seems a promising tool in predicting the potential risk of developing AKI, even before HSCT or just after the procedure.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Jakub Stojanowski
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, 50-556 Wrocław, Poland;
| | - Monika Augustynowicz
- Clinic of Pediatric Nephrology, University Clinical Hospital, Borowska 213, 50-556 Wroclaw, Poland
| | - Izabella Miśkiewicz-Migoń
- Clinical Department of Pediatric Oncology and Hematology, Mother and Child Health Center, Karol Marcinkowski University Hospital, 65-046 Zielona Góra, Poland
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wrocław Medical University, 50-556 Wrocław, Poland; (K.K.); (M.U.)
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wrocław Medical University, 50-556 Wrocław, Poland; (K.K.); (M.U.)
| |
Collapse
|
9
|
Yin M, Lin J, Wang Y, Liu Y, Zhang R, Duan W, Zhou Z, Zhu S, Gao J, Liu L, Liu X, Gu C, Huang Z, Xu X, Xu C, Zhu J. Development and validation of a multimodal model in predicting severe acute pancreatitis based on radiomics and deep learning. Int J Med Inform 2024; 184:105341. [PMID: 38290243 DOI: 10.1016/j.ijmedinf.2024.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 12/16/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Aim to establish a multimodal model for predicting severe acute pancreatitis (SAP) using machine learning (ML) and deep learning (DL). METHODS In this multicentre retrospective study, patients diagnosed with acute pancreatitis at admission were enrolled from January 2017 to December 2021. Clinical information within 24 h and CT scans within 72 h of admission were collected. First, we trained Model α based on clinical features selected by least absolute shrinkage and selection operator analysis. Second, radiomics features were extracted from 3D-CT scans and Model β was developed on the features after dimensionality reduction using principal component analysis. Third, Model γ was trained on 2D-CT images. Lastly, a multimodal model, namely PrismSAP, was constructed based on aforementioned features in the training set. The predictive accuracy of PrismSAP was verified in the validation and internal test sets and further validated in the external test set. Model performance was evaluated using area under the curve (AUC), accuracy, sensitivity, specificity, recall, precision and F1-score. RESULTS A total of 1,221 eligible patients were randomly split into a training set (n = 864), a validation set (n = 209) and an internal test set (n = 148). Data of 266 patients were for external testing. In the external test set, PrismSAP performed best with the highest AUC of 0.916 (0.873-0.960) among all models [Model α: 0.709 (0.618-0.800); Model β: 0.749 (0.675-0.824); Model γ: 0.687 (0.592-0.782); MCTSI: 0.778 (0.698-0.857); RANSON: 0.642 (0.559-0.725); BISAP: 0.751 (0.668-0.833); SABP: 0.710 (0.621-0.798)]. CONCLUSION The proposed multimodal model outperformed any single-modality models and traditional scoring systems.
Collapse
Affiliation(s)
- Minyue Yin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Jiaxi Lin
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Yu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, Jintan Hospital Affiliated to Jiangsu University, Changzhou, Jiangsu 213299, China
| | - Yuanjun Liu
- School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Rufa Zhang
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu 215500, China
| | - Wenbin Duan
- Department of Hepatobiliary Surgery, the People's Hospital of Hunan Province, Changsha, Hunan 410002, China
| | - Zhirun Zhou
- Department of Obstetrics and Gynaecology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Shiqi Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Jingwen Gao
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Lu Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Xiaolin Liu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China
| | - Chenqi Gu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhou Huang
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaodan Xu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Suzhou, Jiangsu 215500, China.
| | - Chunfang Xu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China.
| | - Jinzhou Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Centre of Digestive Diseases, Suzhou, Jiangsu 215006, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China.
| |
Collapse
|
10
|
Scarpato N, Ferroni P, Guadagni F. XAI Unveiled: Revealing the Potential of Explainable AI in Medicine - A Systematic Review. IEEE ACCESS 2024:1-1. [DOI: 10.1109/access.2024.3514197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Noemi Scarpato
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Patrizia Ferroni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Fiorella Guadagni
- Department of Promotion of Human Sciences and Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
11
|
Jia T, Xu K, Bai Y, Lv M, Shan L, Li W, Zhang X, Li Z, Wang Z, Zhao X, Li M, Zhang Y. Machine-learning predictions for acute kidney injuries after coronary artery bypass grafting: a real-life muticenter retrospective cohort study. BMC Med Inform Decis Mak 2023; 23:270. [PMID: 37996844 PMCID: PMC10668365 DOI: 10.1186/s12911-023-02376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Acute kidney injury (AKI) after coronary artery bypass grafting (CABG) surgery is associated with poor outcomes. The objective of this study was to apply a new machine learning (ML) method to establish prediction models of AKI after CABG. METHODS A total of 2,780 patients from two medical centers in East China who underwent primary isolated CABG were enrolled. The dataset was randomly divided for model training (80%) and model testing (20%). Four ML models based on LightGBM, Support vector machine (SVM), Softmax and random forest (RF) algorithms respectively were established in Python. A total of 2,051 patients from two other medical centers were assigned to an external validation group to verify the performances of the ML prediction models. The models were evaluated using the area under the receiver operating characteristics curve (AUC), Hosmer-Lemeshow goodness-of-fit statistic, Bland-Altman plots, and decision curve analysis. The outcome of the LightGBM model was interpreted using SHapley Additive exPlanations (SHAP). RESULTS The incidence of postoperative AKI in the modeling group was 13.4%. Similarly, the incidence of postoperative AKI of the two medical centers in the external validation group was 8.2% and 13.6% respectively. LightGBM performed the best in predicting, with an AUC of 0.8027 in internal validation group and 0.8798 and 0.7801 in the external validation group. The SHAP revealed the top 20 predictors of postoperative AKI ranked according to the importance, and the top three features on prediction were the serum creatinine in the first 24 h after operation, the last preoperative Scr level, and body surface area. CONCLUSION This study provides a LightGBM predictive model that can make accurate predictions for AKI after CABG surgery. The LightGBM model shows good predictive ability in both internal and external validation. It can help cardiac surgeons identify high-risk patients who may experience AKI after CABG surgery.
Collapse
Affiliation(s)
- Tianchen Jia
- College of Information Science, Shanghai Ocean University, Shanghai, P.R. China
| | - Kai Xu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China
| | - Yun Bai
- College of Information Science, Shanghai Ocean University, Shanghai, P.R. China
| | - Mengwei Lv
- Department of Thoracic Surgery, Xuzhou Cancer Hospital, Xuzhou, P.R. China
| | - Lingtong Shan
- Department of Thoracic Surgery, Sheyang County People's Hospital, Yancheng, P.R. China
| | - Wei Li
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai, 200120, China
| | - Xiaobin Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai, 200120, China
| | - Zhi Li
- Department of Cardiovascular Surgery, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Zhenhua Wang
- College of Information Science, Shanghai Ocean University, Shanghai, P.R. China
| | - Xin Zhao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, P.R. China.
| | - Mingliang Li
- Department of Cardiovascular Surgery, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, P.R. China.
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai, 200120, China.
| |
Collapse
|
12
|
Musiał K, Stojanowski J, Miśkiewicz-Bujna J, Kałwak K, Ussowicz M. KIM-1, IL-18, and NGAL, in the Machine Learning Prediction of Kidney Injury among Children Undergoing Hematopoietic Stem Cell Transplantation-A Pilot Study. Int J Mol Sci 2023; 24:15791. [PMID: 37958774 PMCID: PMC10648899 DOI: 10.3390/ijms242115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Children undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are prone to developing acute kidney injury (AKI). Markers of kidney damage: kidney injury molecule (KIM)-1, interleukin (IL)-18, and neutrophil gelatinase-associated lipocalin (NGAL) may ease early diagnosis of AKI. The aim of this study was to assess serum concentrations of KIM-1, IL-18, and NGAL in children undergoing HSCT in relation to classical markers of kidney function (creatinine, cystatin C, estimated glomerular filtration rate (eGFR)) and to analyze their usefulness as predictors of kidney damage with the use of artificial intelligence tools. Serum concentrations of KIM-1, IL-18, NGAL, and cystatin C were assessed by ELISA in 27 children undergoing HSCT before transplantation and up to 4 weeks after the procedure. The data was used to build a Random Forest Classifier (RFC) model of renal injury prediction. The RFC model established on the basis of 3 input variables, KIM-1, IL-18, and NGAL concentrations in the serum of children before HSCT, was able to effectively assess the rate of patients with hyperfiltration, a surrogate marker of kidney injury 4 weeks after the procedure. With the use of the RFC model, serum KIM-1, IL-18, and NGAL may serve as markers of incipient renal dysfunction in children after HSCT.
Collapse
Affiliation(s)
- Kinga Musiał
- Department of Pediatric Nephrology, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Jakub Stojanowski
- Department of Nephrology and Transplantation Medicine, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Justyna Miśkiewicz-Bujna
- Clinical Department of Pediatric Oncology and Hematology, Mother and Child Health Center, Karol Marcinkowski University Hospital, 65-046 Zielona Góra, Poland
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Marek Ussowicz
- Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wrocław Medical University, 50-556 Wrocław, Poland
| |
Collapse
|
13
|
Suppadungsuk S, Thongprayoon C, Miao J, Krisanapan P, Qureshi F, Kashani K, Cheungpasitporn W. Exploring the Potential of Chatbots in Critical Care Nephrology. MEDICINES (BASEL, SWITZERLAND) 2023; 10:58. [PMID: 37887265 PMCID: PMC10608511 DOI: 10.3390/medicines10100058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
The exponential growth of artificial intelligence (AI) has allowed for its integration into multiple sectors, including, notably, healthcare. Chatbots have emerged as a pivotal resource for improving patient outcomes and assisting healthcare practitioners through various AI-based technologies. In critical care, kidney-related conditions play a significant role in determining patient outcomes. This article examines the potential for integrating chatbots into the workflows of critical care nephrology to optimize patient care. We detail their specific applications in critical care nephrology, such as managing acute kidney injury, alert systems, and continuous renal replacement therapy (CRRT); facilitating discussions around palliative care; and bolstering collaboration within a multidisciplinary team. Chatbots have the potential to augment real-time data availability, evaluate renal health, identify potential risk factors, build predictive models, and monitor patient progress. Moreover, they provide a platform for enhancing communication and education for both patients and healthcare providers, paving the way for enriched knowledge and honed professional skills. However, it is vital to recognize the inherent challenges and limitations when using chatbots in this domain. Here, we provide an in-depth exploration of the concerns tied to chatbots' accuracy, dependability, data protection and security, transparency, potential algorithmic biases, and ethical implications in critical care nephrology. While human discernment and intervention are indispensable, especially in complex medical scenarios or intricate situations, the sustained advancements in AI signal that the integration of precision-engineered chatbot algorithms within critical care nephrology has considerable potential to elevate patient care and pivotal outcome metrics in the future.
Collapse
Affiliation(s)
- Supawadee Suppadungsuk
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jing Miao
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Pajaree Krisanapan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Thammasat University Hospital, Pathum Thani 12120, Thailand
| | - Fawad Qureshi
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Kianoush Kashani
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Krisanapan P, Tangpanithandee S, Thongprayoon C, Pattharanitima P, Cheungpasitporn W. Revolutionizing Chronic Kidney Disease Management with Machine Learning and Artificial Intelligence. J Clin Med 2023; 12:jcm12083018. [PMID: 37109354 PMCID: PMC10143586 DOI: 10.3390/jcm12083018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) poses a significant public health challenge, affecting approximately 11% to 13% of the global population [...].
Collapse
Affiliation(s)
- Pajaree Krisanapan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
- Division of Nephrology, Department of Internal Medicine, Thammasat University Hospital, Pathum Thani 12120, Thailand
| | - Supawit Tangpanithandee
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Pattharawin Pattharanitima
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
| | - Wisit Cheungpasitporn
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|