1
|
Tomić M, Nastić K, Dinić M, Brdarić E, Kotur-Stevuljević J, Pecikoza U, Pavićević D, Micov A, Milenković D, Jovanović A, Stepanović-Petrović R. Vortioxetine reduces the development of pain-related behaviour in a knee osteoarthritis model in rats: Involvement of nerve growth factor (NGF) down-regulation. Br J Pharmacol 2024. [PMID: 39299793 DOI: 10.1111/bph.17342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Vortioxetine, a multimodal-acting antidepressant, has recently shown analgesic properties. We aimed to investigate its prophylactic effect in the osteoarthritis (OA) model and gain insights into the underlying molecular mechanisms. Duloxetine was studied as a reference. EXPERIMENTAL APPROACH In the monoiodoacetate (MIA)-induced rat model of knee OA, pain-related behaviour was assessed in weight-bearing and Von Frey tests. Antidepressants were administered orally once daily for 28 days. Gene expression of pain-related mediators (Ngf, Il-1β, Tnf-α, Bdnf, and Tac1 encoding substance P) and oxidative stress parameters were determined after completion of the treatment/behavioural testing protocol. KEY RESULTS Vortioxetine and duloxetine dose dependently reduced weight-bearing asymmetry and mechanical hyperalgesia of the paw ipsilateral to the MIA-injected knee. Vortioxetine reduced the increased Ngf mRNA expression in the MIA-injected knees to the level in sham-injected counterparts. It reduced oxidative stress parameters in the affected knees, more effectively in females than males. Duloxetine showed no effect on Ngf mRNA expression and oxidative stress. Both antidepressants decreased mRNA expression of pain-related mediators in the lumbar L3-L5 ipsilateral DRGs and spinal cords, which were up-regulated in MIA-injected rats. This effect was male-specific. CONCLUSION AND IMPLICATIONS Vortioxetine may be effective against the development of chronic pain in OA. Its antihyperalgesic effect may be mediated, at least in part, by normalization of NGF expression in the affected joint. Decrease of localized oxidative stress and of expression of pain-related mediators that contribute to central sensitization are also involved in vortioxetine's antihyperalgesic effect, in a sex-specific pattern.
Collapse
Affiliation(s)
- Maja Tomić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Katarina Nastić
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Miroslav Dinić
- Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Emilija Brdarić
- Group for Probiotics and Microbiota-Host Interaction, Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Uroš Pecikoza
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - David Pavićević
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ana Micov
- Department of Pharmacology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Danijela Milenković
- Department of Physics and Mathematics, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Aleksandar Jovanović
- Department of Basic and Clinical Sciences, University of Nicosia - Medical School, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia - Medical School, Nicosia, Cyprus
| | | |
Collapse
|
2
|
Xu L, Wang Z, Wang G. Screening of Biomarkers Associated with Osteoarthritis Aging Genes and Immune Correlation Studies. Int J Gen Med 2024; 17:205-224. [PMID: 38268862 PMCID: PMC10807283 DOI: 10.2147/ijgm.s447035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
Purpose Osteoarthritis (OA) is a joint disease with a long and slow course, which is one of the major causes of disability in middle and old-aged people. This study was dedicated to excavating the cellular senescence-associated biomarkers of OA. Methods The Gene Expression Omnibus (GEO) database was searched and five datasets pertaining to OA were obtained. After removing the batch effect, the GSE55235, GSE55457, GSE82107, and GSE12021 datasets were integrated together for screening of the candidate genes by differential analysis and weighted gene co-expression network analysis (WGCNA). Next, those genes were further filtered by machine learning algorithms to obtain cellular senescence-associated biomarkers of OA. Subsequently, enrichment analyses based on those biomarkers were conducted, and we profiled the infiltration levels of 22 types immune cells with the ERSORT algorithm. A lncRNA-miRNA-mRNA regulatory and drug-gene network were constructed. Finally, we validated the senescence-associated biomarkers at both in vivo and in vitro levels. Results Five genes (BCL6, MCL1, SLC16A7, PIM1, and EPHA3) were authenticated as cellular senescence-associated biomarkers in OA. ROC curves demonstrated the reliable capacity of the five genes as a whole to discriminate OA samples from normal samples. The nomogram diagnostic model based on 5 genes proved to be a reliable predictor of OA. Single-gene GSEA results pointed to the involvement of the five biomarkers in immune-related pathways and oxidative phosphorylation in the development of OA. Immune infiltration analysis manifested that the five genes were significantly correlated with differential immune cells. Subsequently, a lncRNA-miRNA-mRNA network and gene-drug network containing were generated based on five cellular senescence-associated biomarkers in OA. Conclusion A foundation for understanding the pathophysiology of OA and new insights into OA diagnosis and treatment were provided by the identification of five genes, namely BCL6, MCL1, SLC16A7, PIM1, and EPHA3, as biomarkers associated with cellular senescence in OA.
Collapse
Affiliation(s)
- Lanwei Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People’s Republic of China
| | - Gang Wang
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| |
Collapse
|
3
|
Veronesi F, Contartese D, Di Sarno L, Borsari V, Fini M, Giavaresi G. In Vitro Models of Cell Senescence: A Systematic Review on Musculoskeletal Tissues and Cells. Int J Mol Sci 2023; 24:15617. [PMID: 37958603 PMCID: PMC10650924 DOI: 10.3390/ijms242115617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Ageing is an irreversible and inevitable biological process and a significant risk factor for the development of various diseases, also affecting the musculoskeletal system, resulting from the accumulation of cell senescence. The aim of this systematic review was to collect the in vitro studies conducted over the past decade in which cell senescence was induced through various methods, with the purpose of evaluating the molecular and cellular mechanisms underlying senescence and to identify treatments capable of delaying senescence. Through three electronic databases, 22 in vitro studies were identified and included in this systematic review. Disc, cartilage, or muscle cells or tissues and mesenchymal stem cells were employed to set-up in vitro models of senescence. The most common technique used to induce cell senescence was the addition to the culture medium of tumor necrosis factor (TNF)α and/or interleukin (IL)1β, followed by irradiation, compression, hydrogen peroxide (H2O2), microgravity, in vitro expansion up to passage 10, and cells harvested from damaged areas of explants. Few studies evaluated possible treatments to anti-senescence effects. The included studies used in vitro models of senescence in musculoskeletal tissues, providing powerful tools to evaluate age-related changes and pathologies, also contributing to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Veronesi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Deyanira Contartese
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Laura Di Sarno
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Veronica Borsari
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (F.V.); (L.D.S.); (V.B.); (G.G.)
| |
Collapse
|
4
|
Davan I, Fakurazi S, Alias E, Ibrahim N'I, Hwei NM, Hassan H. Astaxanthin as a Potent Antioxidant for Promoting Bone Health: An Up-to-Date Review. Antioxidants (Basel) 2023; 12:1480. [PMID: 37508018 PMCID: PMC10376010 DOI: 10.3390/antiox12071480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-β-β carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.
Collapse
Affiliation(s)
- Iswari Davan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|