1
|
Duenas S, McGee Z, Mhatre I, Mayilvahanan K, Patel KK, Abdelhalim H, Jayprakash A, Wasif U, Nwankwo O, Degroat W, Yanamala N, Sengupta PP, Fine D, Ahmed Z. Computational approaches to investigate the relationship between periodontitis and cardiovascular diseases for precision medicine. Hum Genomics 2024; 18:116. [PMID: 39427205 PMCID: PMC11491019 DOI: 10.1186/s40246-024-00685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Periodontitis is a highly prevalent inflammatory illness that leads to the destruction of tooth supporting tissue structures and has been associated with an increased risk of cardiovascular disease (CVD). Precision medicine, an emerging branch of medical treatment, aims can further improve current traditional treatment by personalizing care based on one's environment, genetic makeup, and lifestyle. Genomic databases have paved the way for precision medicine by elucidating the pathophysiology of complex, heritable diseases. Therefore, the investigation of novel periodontitis-linked genes associated with CVD will enhance our understanding of their linkage and related biochemical pathways for targeted therapies. In this article, we highlight possible mechanisms of actions connecting PD and CVD. Furthermore, we delve deeper into certain heritable inflammatory-associated pathways linking the two. The goal is to gather, compare, and assess high-quality scientific literature alongside genomic datasets that seek to establish a link between periodontitis and CVD. The scope is focused on the most up to date and authentic literature published within the last 10 years, indexed and available from PubMed Central, that analyzes periodontitis-associated genes linked to CVD. Based on the comparative analysis criteria, fifty-one genes associated with both periodontitis and CVD were identified and reported. The prevalence of genes associated with both CVD and periodontitis warrants investigation to assess the validity of a potential linkage between the pathophysiology of both diseases.
Collapse
Affiliation(s)
- Sophia Duenas
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Zachary McGee
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Ishani Mhatre
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Karthikeyan Mayilvahanan
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Kush Ketan Patel
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Atharv Jayprakash
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Uzayr Wasif
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Oluchi Nwankwo
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - William Degroat
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Naveena Yanamala
- Division of Cardiovascular Diseases and Hypertension, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA
| | - Partho P Sengupta
- Division of Cardiovascular Diseases and Hypertension, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA
| | - Daniel Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ, US
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA.
- Division of Cardiovascular Diseases and Hypertension, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA.
- Department of Medicine, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
2
|
Sun C, Deng H, Li Q, Wang P, Chen Y, Sun Y, Han C. HOXB9 promotes laryngeal squamous cell carcinoma progression by upregulating MMP12. Funct Integr Genomics 2024; 24:78. [PMID: 38632141 DOI: 10.1007/s10142-024-01357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Transcriptional factor HOXB9, a part of the HOX gene family, plays a crucial role in the development of diverse cancer types. This study aimed to elucidate the regulatory mechanism of HOXB9 on the proliferation and invasion of laryngeal squamous cell carcinoma (LSCC) cells to provide guidance for the development and prognosis of LSCC. The CRISPR/Cas9 method was employed in LSCC cell lines to knock out the HOXB9 gene and validate its effects on the proliferation, migration, invasion, and regulation of LSCC cells. CCK-8 and flow cytometry were used to detect cell viability and proliferation; Tunnel was used to detect cell apoptosis, and transwell was used to detect cell migration and invasion. The effect of HOXB9 on tumor growth was tested in nude mice. The downstream target genes regulated by HOXB9 were screened by microarray analysis and verified by Western blotting, immunohistochemistry, chromatin immunoprecipitation, and double-luciferase reporter assays. The current research investigated molecular pathways governed by HOXB9 in the development of LSCC. Additionally, both laboratory- and living-organism-based investigations revealed that disrupting the HOXB9 gene through the CRISPR/CAS9 mechanism restrained cellular growth, movement, and infiltration, while enhancing cellular apoptosis. Detailed analyses of LSCC cell strains and human LSCC samples revealed that HOXB9 promoted LSCC progression by directly elevating the transcriptional activity of MMP12. HOXB9 could influence changes in LSCC cell functions, and the mechanism of action might be exerted through its downstream target gene, MMP12.
Collapse
Affiliation(s)
- Chuanhui Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550001, Guiyang, Guizhou, People's Republic of China
| | - Hua Deng
- Department of Otorhinolaryngology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, 550001, Guiyang, Guizhou, People's Republic of China
| | - Qiuying Li
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, 150001, Harbin, Heilongjiang, People's Republic of China
| | - Peng Wang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, 150001, Harbin, Heilongjiang, People's Republic of China
| | - Yujiang Chen
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan Bei Road, 550001, Guiyang, Guizhou, People's Republic of China
| | - Yanan Sun
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xue Fu Road, 150001, Harbin, Heilongjiang, People's Republic of China.
| | - Changsong Han
- Department of Pathology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan Bei Road, 550001, Guiyang, Guizhou, People's Republic of China.
| |
Collapse
|
3
|
Li J, Jiang S, Huang C, Lu B, Yang X. Identification and validation of genes associated with aging-related cardiovascular disease. FASEB J 2024; 38:e23370. [PMID: 38168496 DOI: 10.1096/fj.202301270rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Aging is acknowledged as the most significant risk factor for cardiovascular disease (CVD). This study sought to identify and validate potential aging-related genes associated with CVD by using bioinformatics. The confluence of the limma test, weighted correlation network analysis (WGCNA), and 2129 aging and senescence-associated genes led to the identification of aging-related differential expression genes (ARDEGs). By using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), potential biological roles and pathways of ARDEGs were identified. To find the significantly different functions between CVD and non-cardiovascular disease (nCVD) and to reckon the processes score, enrichment analysis of all genes was carried out using gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). By using GO and KEGG, potential biological roles and pathways of ARDEGs were identified. To evaluate the immune cell composition of the immune microenvironment, we performed an immune infiltration analysis on the dataset from the training group. We were able to acquire four ARDEGs (PTGS2, MMP9, HBEGF, and FN1). Aging, cellular senescence, and nitric oxide signal transduction were selected for biological function analysis. The diagnostic value of the four ARDEGs in distinguishing CVD from nCVD samples was deemed to be favorable. This research identified four ARDEGs that are associated with CVD. This study provides insight into prospective novel biomarkers for aging-related CVD diagnosis and progression monitoring.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Shengping Jiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Chengyun Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Baihui Lu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, P. R. China
| |
Collapse
|