1
|
Lai CL, Karmakar R, Mukundan A, Natarajan RK, Lu SC, Wang CY, Wang HC. Advancing hyperspectral imaging and machine learning tools toward clinical adoption in tissue diagnostics: A comprehensive review. APL Bioeng 2024; 8:041504. [PMID: 39660034 PMCID: PMC11629177 DOI: 10.1063/5.0240444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Hyperspectral imaging (HSI) has become an evident transformative apparatus in medical diagnostics. The review aims to appraise the present advancement and challenges in HSI for medical applications. It features a variety of medical applications namely diagnosing diabetic retinopathy, neurodegenerative diseases like Parkinson's and Alzheimer's, which illustrates its effectiveness in early diagnosis, early caries detection in periodontal disease, and dermatology by detecting skin cancer. Regardless of these advances, the challenges exist within every aspect that limits its broader clinical adoption. It has various constraints including difficulties with technology related to the complexity of the HSI system and needing specialist training, which may act as a drawback to its clinical settings. This article pertains to potential challenges expressed in medical applications and probable solutions to overcome these constraints. Successful companies that perform advanced solutions with HSI in terms of medical applications are being emphasized in this study to signal the high level of interest in medical diagnosis for systems to incorporate machine learning ML and artificial intelligence AI to foster precision diagnosis and standardized clinical workflow. This advancement signifies progressive possibilities of HSI in real-time clinical assessments. In conclusion despite HSI has been presented as a significant advanced medical imaging tool, addressing its limitations and probable solutions is for broader clinical adoption.
Collapse
Affiliation(s)
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| | - Ragul Kumar Natarajan
- Department of Biotechnology, Karpagam Academy of Higher Education, Salem - Kochi Hwy, Eachanari, Coimbatore, Tamil Nadu 641021, India
| | - Song-Cun Lu
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| | - Cheng-Yi Wang
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Kaohsiung City 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| |
Collapse
|
2
|
Jian Z, Song T, Zhang Z, Ai Z, Zhao H, Tang M, Liu K. Deep learning method for detecting fluorescence spots in cancer diagnostics via fluorescence in situ hybridization. Sci Rep 2024; 14:27231. [PMID: 39516673 PMCID: PMC11549464 DOI: 10.1038/s41598-024-78571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Fluorescence in Situ Hybridization (FISH) is a technique for macromolecule identification that utilizes the complementarity of DNA or DNA/RNA double strands. Probes, crafted from selected DNA strands tagged with fluorophore-coupled nucleotides, hybridize to complementary sequences within the cells and tissues under examination. These are subsequently visualized through fluorescence microscopy or imaging systems. However, the vast number of cells and disorganized nucleic acid sequences in FISH images present significant challenges. The manual processing and analysis of these images are not only time-consuming but also prone to human error due to visual fatigue. To overcome these challenges, we propose the integration of medical imaging with deep learning to develop an automated detection system for FISH images. This system features an algorithm capable of quickly detecting fluorescent spots and capturing their coordinates, which is crucial for evaluating cellular characteristics in cancer diagnosis. Traditional models struggle with the small size, low resolution, and noise prevalent in fluorescent points, leading to significant performance declines. This paper offers a detailed examination of these issues, providing insights into why traditional models falter. Comparative tests between the YOLO series models and our proposed method affirm the superior accuracy of our approach in identifying fluorescent dots in FISH images.
Collapse
Affiliation(s)
- Zini Jian
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Tianxiang Song
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zhihui Zhang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zhao Ai
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Heng Zhao
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Man Tang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Kan Liu
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, China.
| |
Collapse
|
3
|
Leung JH, Karmakar R, Mukundan A, Thongsit P, Chen MM, Chang WY, Wang HC. Systematic Meta-Analysis of Computer-Aided Detection of Breast Cancer Using Hyperspectral Imaging. Bioengineering (Basel) 2024; 11:1060. [PMID: 39593720 PMCID: PMC11591395 DOI: 10.3390/bioengineering11111060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The most commonly occurring cancer in the world is breast cancer with more than 500,000 cases across the world. The detection mechanism for breast cancer is endoscopist-dependent and necessitates a skilled pathologist. However, in recent years many computer-aided diagnoses (CADs) have been used to diagnose and classify breast cancer using traditional RGB images that analyze the images only in three-color channels. Nevertheless, hyperspectral imaging (HSI) is a pioneering non-destructive testing (NDT) image-processing technique that can overcome the disadvantages of traditional image processing which analyzes the images in a wide-spectrum band. Eight studies were selected for systematic diagnostic test accuracy (DTA) analysis based on the results of the Quadas-2 tool. Each of these studies' techniques is categorized according to the ethnicity of the data, the methodology employed, the wavelength that was used, the type of cancer diagnosed, and the year of publication. A Deeks' funnel chart, forest charts, and accuracy plots were created. The results were statistically insignificant, and there was no heterogeneity among these studies. The methods and wavelength bands that were used with HSI technology to detect breast cancer provided high sensitivity, specificity, and accuracy. The meta-analysis of eight studies on breast cancer diagnosis using HSI methods reported average sensitivity, specificity, and accuracy of 78%, 89%, and 87%, respectively. The highest sensitivity and accuracy were achieved with SVM (95%), while CNN methods were the most commonly used but had lower sensitivity (65.43%). Statistical analyses, including meta-regression and Deeks' funnel plots, showed no heterogeneity among the studies and highlighted the evolving performance of HSI techniques, especially after 2019.
Collapse
Affiliation(s)
- Joseph-Hang Leung
- Department of Radiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600566, Taiwan;
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi City 62102, Taiwan; (R.K.); (A.M.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi City 62102, Taiwan; (R.K.); (A.M.)
| | - Pacharasak Thongsit
- Faculty of Mechanical Engineering, King Mongkut’s University of Technology North Bangkok, Pracharat 1 Road, Wongsawang, Bangsue, Bangkok 10800, Thailand;
| | - Meei-Maan Chen
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi 62102, Taiwan;
| | - Wen-Yen Chang
- Department of General Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st.Rd., Lingya District, Kaohsiung City 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chiayi City 62102, Taiwan; (R.K.); (A.M.)
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi 62247, Taiwan
- Hitspectra Intelligent Technology Co., Ltd., 4F., No. 2, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung City 80661, Taiwan
| |
Collapse
|
4
|
Zokay M, Saylani H. Blind Separation of Skin Chromophores from Multispectral Dermatological Images. Diagnostics (Basel) 2024; 14:2288. [PMID: 39451611 PMCID: PMC11506256 DOI: 10.3390/diagnostics14202288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Based on Blind Source Separation and the use of multispectral imaging, the new approach we propose in this paper aims to improve the estimation of the concentrations of the main skin chromophores (melanin, oxyhemoglobin and deoxyhemoglobin), while considering shading as a fully-fledged source. Methods: In this paper, we demonstrate that the use of the Infra-Red spectral band, in addition to the traditional RGB spectral bands of dermatological images, allows us to model the image provided by each spectral band as a mixture of the concentrations of the three chromophores in addition to that of the shading, which are estimated through four steps using Blind Source Separation. Results: We studied the performance of our new method on a database of real multispectral dermatological images of melanoma by proposing a new quantitative performances measurement criterion based on mutual information. We then validated these performances on a database of multispectral dermatological images that we simulated using our own new protocol. Conclusions: All the results obtained demonstrated the effectiveness of our new approach for estimating the concentrations of the skin chromophores from a multispectral dermatological image, compared to traditional approaches that consist of using only the RGB image by neglecting shading.
Collapse
|
5
|
Mateen M, Hayat S, Arshad F, Gu YH, Al-antari MA. Hybrid Deep Learning Framework for Melanoma Diagnosis Using Dermoscopic Medical Images. Diagnostics (Basel) 2024; 14:2242. [PMID: 39410645 PMCID: PMC11476274 DOI: 10.3390/diagnostics14192242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Melanoma, or skin cancer, is a dangerous form of cancer that is the major cause of the demise of thousands of people around the world. Methods: In recent years, deep learning has become more popular for analyzing and detecting these medical issues. In this paper, a hybrid deep learning approach has been proposed based on U-Net for image segmentation, Inception-ResNet-v2 for feature extraction, and the Vision Transformer model with a self-attention mechanism for refining the features for early and accurate diagnosis and classification of skin cancer. Furthermore, in the proposed approach, hyperparameter tuning helps to obtain more accurate and optimized results for image classification. Results: Dermoscopic shots gathered by the worldwide skin imaging collaboration (ISIC2020) challenge dataset are used in the proposed research work and achieved 98.65% accuracy, 99.20% sensitivity, and 98.03% specificity, which outperforms the other existing approaches for skin cancer classification. Furthermore, the HAM10000 dataset is used for ablation studies to compare and validate the performance of the proposed approach. Conclusions: The achieved outcome suggests that the proposed approach would be able to serve as a valuable tool for assisting dermatologists in the early detection of melanoma.
Collapse
Affiliation(s)
- Muhammad Mateen
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, China
| | - Shaukat Hayat
- Department of Software Engineering, International Islamic University, Islamabad 44000, Pakistan;
| | - Fizzah Arshad
- Department of Computer Science, Air University Multan Campus, Multan 61000, Pakistan;
| | - Yeong-Hyeon Gu
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
6
|
Courtenay LA, Barbero-García I, Martínez-Lastras S, Del Pozo S, Corral M, González-Aguilera D. Using computational learning for non-melanoma skin cancer and actinic keratosis near-infrared hyperspectral signature classification. Photodiagnosis Photodyn Ther 2024; 49:104269. [PMID: 39002835 DOI: 10.1016/j.pdpdt.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND The early detection of Non-Melanoma Skin Cancer (NMSC) is essential to ensure patients receive the most effective treatment. Diagnostic screening tools for NMSC are crucial due to high confusion rates with other types of skin lesions, such as Actinic Keratosis. Nevertheless, current means of diagnosing and screening patients rely on either visual criteria, that are often conditioned by subjectivity and experience, or highly invasive, slow, and costly methods, such as histological diagnoses. From this, the objectives of the present study are to test if classification accuracies improve in the Near-Infrared region of the electromagnetic spectrum, as opposed to previous research in shorter wavelengths. METHODS This study utilizes near-infrared hyperspectral imaging, within the range of 900.6 and 1454.8 nm. Images were captured for a total of 125 patients, including 66 patients with Basal Cell Carcinoma, 42 with cutaneous Squamous Cell Carcinoma, and 17 with Actinic Keratosis, to differentiate between healthy and unhealthy skin lesions. A combination of hybrid convolutional neural networks (for feature extraction) and support vector machine algorithms (as a final activation layer) was employed for analysis. In addition, we test whether transfer learning is feasible from networks trained on shorter wavelengths of the electromagnetic spectrum. RESULTS The implemented method achieved a general accuracy of over 80 %, with some tasks reaching over 90 %. F1 scores were also found to generally be over the optimal threshold of 0.8. The best results were obtained when detecting Actinic Keratosis, however differentiation between the two types of malignant lesions was often noted to be more difficult. These results demonstrate the potential of near-infrared hyperspectral imaging combined with advanced machine learning techniques in distinguishing NMSC from other skin lesions. Transfer learning was unsuccessful in improving the training of these algorithms. CONCLUSIONS We have shown that the Near-Infrared region of the electromagnetic spectrum is highly useful for the identification and study of non-melanoma type skin lesions. While the results are promising, further research is required to develop more robust algorithms that can minimize the impact of noise in these datasets before clinical application is feasible.
Collapse
Affiliation(s)
- Lloyd A Courtenay
- CNRS, PACEA UMR 5199, Université de Bordeaux, Bât B2, Allée Geoffroy Saint Hilaire, CS50023, Pessac, 33600, France.
| | - Innes Barbero-García
- Department of Cartographic and Terrain Engineering, Higher Polytechnic School of Ávila, Universidad de Salamanca, Calle Hornos Caleros 50, 05003 Ávila, Spain
| | - Saray Martínez-Lastras
- Department of Cartographic and Terrain Engineering, Higher Polytechnic School of Ávila, Universidad de Salamanca, Calle Hornos Caleros 50, 05003 Ávila, Spain
| | - Susana Del Pozo
- Department of Cartographic and Terrain Engineering, Higher Polytechnic School of Ávila, Universidad de Salamanca, Calle Hornos Caleros 50, 05003 Ávila, Spain
| | - Miriam Corral
- Dermatology Service, Ávila Healthcare Complex, Calle Jesús del Gran Poder 42, 05003, Ávila, Spain
| | - Diego González-Aguilera
- Department of Cartographic and Terrain Engineering, Higher Polytechnic School of Ávila, Universidad de Salamanca, Calle Hornos Caleros 50, 05003 Ávila, Spain
| |
Collapse
|
7
|
Wang YP, Karmakar R, Mukundan A, Tsao YM, Sung TC, Lu CL, Wang HC. Spectrum aided vision enhancer enhances mucosal visualization by hyperspectral imaging in capsule endoscopy. Sci Rep 2024; 14:22243. [PMID: 39333620 PMCID: PMC11436966 DOI: 10.1038/s41598-024-73387-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Narrow-band imaging (NBI) is more efficient in detecting early gastrointestinal cancer than white light imaging (WLI). NBI technology is available only in conventional endoscopy, but unavailable in magnetic-assisted capsule endoscopy (MACE) systems due to MACE's small size and obstacles in image processing issues. MACE is an easy, safe, and convenient tool for both patients and physicians to avoid the disadvantages of conventional endoscopy. Enabling NBI technology in MACE is mandatory. We developed a novel method to improve mucosal visualization using hyperspectral imaging (HSI) known as Spectrum Aided Visual Enhancer (SAVE, Transfer N, Hitspectra Intelligent Technology Co., Kaohsiung, Taiwan). The technique was developed by converting the WLI image captured by MACE to enhance SAVE images. The structural similarity index metric (SSIM) between the WLI MACE images and the enhanced SAVE images was 91%, while the entropy difference between the WLI MACE images and the enhanced SAVE images was only 0.47%. SAVE algorithm can identify the mucosal break on the esophagogastric junction in patients with gastroesophageal reflux disorder. We successfully developed a novel image-enhancing technique, SAVE, in the MACE system, showing close similarity to the NBI from the conventional endoscopy system. The future application of this novel technology in the MACE system can be promising.
Collapse
Affiliation(s)
- Yen-Po Wang
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan
- Institute of Brain Sciences, National Yang Ming Chiao Tung University, 155, Li-Nong St., Sec.2, Peitou, Taipei City, 11217, Taiwan
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi, 62102, Taiwan
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi, 62102, Taiwan
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi, 62102, Taiwan
| | - Te-Chin Sung
- Insight Medical Solutions Inc., No. 1, Lixing 6th Rd., East Dist., Hsinchu City, 300096, Taiwan
| | - Ching-Liang Lu
- Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan.
- Institute of Brain Sciences, National Yang Ming Chiao Tung University, 155, Li-Nong St., Sec.2, Peitou, Taipei City, 11217, Taiwan.
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi, 62102, Taiwan.
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan.
- Hitspectra Intelligent Technology Co., Ltd., 8F.11-1, No. 25, Chenggong 2nd Rd., Kaohsiung, 80661, Taiwan.
| |
Collapse
|
8
|
Huang SY, Karmakar R, Chen YY, Hung WC, Mukundan A, Wang HC. Large-Area Film Thickness Identification of Transparent Glass by Hyperspectral Imaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:5094. [PMID: 39204790 PMCID: PMC11359249 DOI: 10.3390/s24165094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
This study introduces a novel method for detecting and measuring transparent glass sheets using hyperspectral imaging (HSI). The main goal of this study is to create a conversion technique that can accurately display spectral information from collected images, particularly in the visible light spectrum (VIS) and near-infrared (NIR) areas. This technique enables the capture of relevant spectral data when used with images provided by industrial cameras. The next step in this investigation is using principal component analysis to examine the obtained hyperspectral images derived from different treated glass samples. This analytical procedure standardizes the magnitude of light wavelengths that are inherent in the HSI images. The simulated spectral profiles are obtained using the generalized inverse matrix technique on the normalized HSI images. These profiles are then matched with spectroscopic data obtained from microscopic imaging, resulting in the observation of distinct dispersion patterns. The novel use of images coloring methods effectively displays the thickness of the glass processing sheet in a visually noticeable way. Based on empirical research, changes in the thickness of the glass coating in the NIR-HSI range cause significant changes in the transmission of infrared light at different wavelengths within the NIR spectrum. This phenomenon serves as the foundation for the study of film thickness. The root mean square error inside the NIR area is impressively low, calculated to be just 0.02. This highlights the high level of accuracy achieved by the technique stated above. Potential areas of investigation that arise from this study are incorporating the proposed approach into the design of a real-time, wide-scale automated optical inspection system.
Collapse
Affiliation(s)
- Shuan-Yu Huang
- Department of Optometry, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan;
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (R.K.); (Y.-Y.C.)
| | - Yu-Yang Chen
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (R.K.); (Y.-Y.C.)
| | - Wei-Chin Hung
- Department of Physics, R. O. C. Military Academy, Kaohsiung 83020, Taiwan;
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (R.K.); (Y.-Y.C.)
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; (R.K.); (Y.-Y.C.)
- Hitspectra Intelligent Technology Co., Ltd., Kaohsiung 80661, Taiwan
| |
Collapse
|
9
|
Vasanthakumari P, Romano RA, Rosa RGT, Salvio AG, Yakovlev V, Kurachi C, Hirshburg JM, Jo JA. Pixel-level classification of pigmented skin cancer lesions using multispectral autofluorescence lifetime dermoscopy imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4557-4583. [PMID: 39346997 PMCID: PMC11427192 DOI: 10.1364/boe.523831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
There is no clinical tool available to primary care physicians or dermatologists that could provide objective identification of suspicious skin cancer lesions. Multispectral autofluorescence lifetime imaging (maFLIM) dermoscopy enables label-free biochemical and metabolic imaging of skin lesions. This study investigated the use of pixel-level maFLIM dermoscopy features for objective discrimination of malignant from visually similar benign pigmented skin lesions. Clinical maFLIM dermoscopy images were acquired from 60 pigmented skin lesions before undergoing a biopsy examination. Random forest and deep neural networks classification models were explored, as they do not require explicit feature selection. Feature pools with either spectral intensity or bi-exponential maFLIM features, and a combined feature pool, were independently evaluated with each classification model. A rigorous cross-validation strategy tailored for small-size datasets was adopted to estimate classification performance. Time-resolved bi-exponential autofluorescence features were found to be critical for accurate detection of malignant pigmented skin lesions. The deep neural network model produced the best lesion-level classification, with sensitivity and specificity of 76.84%±12.49% and 78.29%±5.50%, respectively, while the random forest classifier produced sensitivity and specificity of 74.73%±14.66% and 76.83%±9.58%, respectively. Results from this study indicate that machine-learning driven maFLIM dermoscopy has the potential to assist doctors with identifying patients in real need of biopsy examination, thus facilitating early detection while reducing the rate of unnecessary biopsies.
Collapse
Affiliation(s)
| | - Renan A. Romano
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Ramon G. T. Rosa
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Ana G. Salvio
- Skin Department of Amaral Carvalho Hospital, São Paulo, Brazil
| | - Vladislav Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, TX, USA
| | - Cristina Kurachi
- University of São Paulo, São Carlos Institute of Physics, São Paulo, Brazil
| | - Jason M. Hirshburg
- University of Oklahoma Health Science Center, Department of Dermatology, Oklahoma City, OK, USA
| | - Javier A. Jo
- University of Oklahoma, School of Electrical and Computer Engineering, Norman, OK, USA
| |
Collapse
|
10
|
Lin TL, Lu CT, Karmakar R, Nampalley K, Mukundan A, Hsiao YP, Hsieh SC, Wang HC. Assessing the Efficacy of the Spectrum-Aided Vision Enhancer (SAVE) to Detect Acral Lentiginous Melanoma, Melanoma In Situ, Nodular Melanoma, and Superficial Spreading Melanoma. Diagnostics (Basel) 2024; 14:1672. [PMID: 39125548 PMCID: PMC11312294 DOI: 10.3390/diagnostics14151672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Skin cancer is the predominant form of cancer worldwide, including 75% of all cancer cases. This study aims to evaluate the effectiveness of the spectrum-aided visual enhancer (SAVE) in detecting skin cancer. This paper presents the development of a novel algorithm for snapshot hyperspectral conversion, capable of converting RGB images into hyperspectral images (HSI). The integration of band selection with HSI has facilitated the identification of a set of narrow band images (NBI) from the RGB images. This study utilizes various iterations of the You Only Look Once (YOLO) machine learning (ML) framework to assess the precision, recall, and mean average precision in the detection of skin cancer. YOLO is commonly preferred in medical diagnostics due to its real-time processing speed and accuracy, which are essential for delivering effective and efficient patient care. The precision, recall, and mean average precision (mAP) of the SAVE images show a notable enhancement in comparison to the RGB images. This work has the potential to greatly enhance the efficiency of skin cancer detection, as well as improve early detection rates and diagnostic accuracy. Consequently, it may lead to a reduction in both morbidity and mortality rates.
Collapse
Affiliation(s)
- Teng-Li Lin
- Department of Dermatology, Dalin Tzu Chi General Hospital, No. 2, Min-Sheng Rd., Dalin Town, Chiayi 62247, Taiwan;
| | - Chun-Te Lu
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Beitou District, Taipei 112304, Taiwan;
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 407219, Taiwan
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (K.N.); (A.M.)
| | - Kalpana Nampalley
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (K.N.); (A.M.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (K.N.); (A.M.)
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., South Dist., Taichung City 40201, Taiwan;
- Institute of Medicine, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., South Dist., Taichung City 40201, Taiwan
| | - Shang-Chin Hsieh
- Department of Surgery, Division of General Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (K.N.); (A.M.)
- Department of Technology Development, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung 80661, Taiwan
| |
Collapse
|
11
|
Hosseinzadeh M, Hussain D, Zeki Mahmood FM, A. Alenizi F, Varzeghani AN, Asghari P, Darwesh A, Malik MH, Lee SW. A model for skin cancer using combination of ensemble learning and deep learning. PLoS One 2024; 19:e0301275. [PMID: 38820401 PMCID: PMC11142560 DOI: 10.1371/journal.pone.0301275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 06/02/2024] Open
Abstract
Skin cancer has a significant impact on the lives of many individuals annually and is recognized as the most prevalent type of cancer. In the United States, an estimated annual incidence of approximately 3.5 million people receiving a diagnosis of skin cancer underscores its widespread prevalence. Furthermore, the prognosis for individuals afflicted with advancing stages of skin cancer experiences a substantial decline in survival rates. This paper is dedicated to aiding healthcare experts in distinguishing between benign and malignant skin cancer cases by employing a range of machine learning and deep learning techniques and different feature extractors and feature selectors to enhance the evaluation metrics. In this paper, different transfer learning models are employed as feature extractors, and to enhance the evaluation metrics, a feature selection layer is designed, which includes diverse techniques such as Univariate, Mutual Information, ANOVA, PCA, XGB, Lasso, Random Forest, and Variance. Among transfer models, DenseNet-201 was selected as the primary feature extractor to identify features from data. Subsequently, the Lasso method was applied for feature selection, utilizing diverse machine learning approaches such as MLP, XGB, RF, and NB. To optimize accuracy and precision, ensemble methods were employed to identify and enhance the best-performing models. The study provides accuracy and sensitivity rates of 87.72% and 92.15%, respectively.
Collapse
Affiliation(s)
- Mehdi Hosseinzadeh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Dildar Hussain
- Department of AI and Data Science, Sejong University, Seoul, Republic of Korea
| | | | - Farhan A. Alenizi
- Electrical Engineering Department, College of engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Parvaneh Asghari
- Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aso Darwesh
- Department of Information Technology, University of Human Development, Sulaymaniyah, Kurdistan region of Iraq
| | - Mazhar Hussain Malik
- School of Computer Science and Creative Technologies College of Arts, Technology and Environment (CATE) University of the West of England Frenchay Campus, Coldharbour Lane Bristol, Bristol, United Kingdom
| | - Sang-Woong Lee
- Pattern Recognition and Machine Learning Lab, Gachon University, Seongnamdaero, Sujeonggu, Seongnam, Republic of Korea
| |
Collapse
|
12
|
K K, S K, J AK, B C. Enhancing Skin Cancer Classification using Efficient Net B0-B7 through Convolutional Neural Networks and Transfer Learning with Patient-Specific Data. Asian Pac J Cancer Prev 2024; 25:1795-1802. [PMID: 38809652 PMCID: PMC11318802 DOI: 10.31557/apjcp.2024.25.5.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Skin cancer diagnosis challenges dermatologists due to its complex visual variations across diagnostic categories. Convolutional neural networks (CNNs), specifically the Efficient Net B0-B7 series, have shown superiority in multiclass skin cancer classification. This study addresses the limitations of visual examination by presenting a tailored preprocessing pipeline designed for Efficient Net models. Leveraging transfer learning with pre-trained ImageNet weights, the research aims to enhance diagnostic accuracy in an imbalanced multiclass classification context. METHODS The study develops a specialized image preprocessing pipeline involving image scaling, dataset augmentation, and artifact removal tailored to the nuances of Efficient Net models. Using the Efficient Net B0-B7 dataset, transfer learning fine-tunes CNNs with pre-trained ImageNet weights. Rigorous evaluation employs key metrics like Precision, Recall, Accuracy, F1 Score, and Confusion Matrices to assess the impact of transfer learning and fine-tuning on each Efficient Net variant's performance in classifying diverse skin cancer categories. RESULTS The research showcases the effectiveness of the tailored preprocessing pipeline for Efficient Net models. Transfer learning and fine-tuning significantly enhance the models' ability to discern diverse skin cancer categories. The evaluation of eight Efficient Net models (B0-B7) for skin cancer classification reveals distinct performance patterns across various cancer classes. While the majority class, Benign Kertosis, achieves high accuracy (>87%), challenges arise in accurately classifying Eczema classes. Melanoma, despite its minority representation (2.42% of images), attains an average accuracy of 80.51% across all models. However, suboptimal performance is observed in predicting warts molluscum (90.7%) and psoriasis (84.2%) instances, highlighting the need for targeted improvements in accurately identifying specific skin cancer types. CONCLUSION The study on skin cancer classification utilizes EfficientNets B0-B7 with transfer learning from ImageNet weights. The pinnacle performance is observed with EfficientNet-B7, achieving a groundbreaking top-1 accuracy of 84.4% and top-5 accuracy of 97.1%. Remarkably efficient, it is 8.4 times smaller than the leading CNN. Detailed per-class classification exactitudes through Confusion Matrices affirm its proficiency, signaling the potential of EfficientNets for precise dermatological image analysis.
Collapse
Affiliation(s)
- Kanchana K
- Department of Electrical and Electronics Engineering, Saveetha Engineering College, Tamil Nadu, India.
| | - Kavitha S
- Department of Electrical and Electronics Engineering, Saveetha Engineering College, Tamil Nadu, India.
| | - Anoop K J
- Department of Electrical and Electronics Engineering, VISAT Engineering College, Kerala, India.
| | - Chinthamani B
- Department of Electronics and Instrumentation Engineering, Easwari Engineering College, Tamil Nadu, India.
| |
Collapse
|
13
|
Petracchi B, Torti E, Marenzi E, Leporati F. Acceleration of Hyperspectral Skin Cancer Image Classification through Parallel Machine-Learning Methods. SENSORS (BASEL, SWITZERLAND) 2024; 24:1399. [PMID: 38474935 DOI: 10.3390/s24051399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Hyperspectral imaging (HSI) has become a very compelling technique in different scientific areas; indeed, many researchers use it in the fields of remote sensing, agriculture, forensics, and medicine. In the latter, HSI plays a crucial role as a diagnostic support and for surgery guidance. However, the computational effort in elaborating hyperspectral data is not trivial. Furthermore, the demand for detecting diseases in a short time is undeniable. In this paper, we take up this challenge by parallelizing three machine-learning methods among those that are the most intensively used: Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGB) algorithms using the Compute Unified Device Architecture (CUDA) to accelerate the classification of hyperspectral skin cancer images. They all showed a good performance in HS image classification, in particular when the size of the dataset is limited, as demonstrated in the literature. We illustrate the parallelization techniques adopted for each approach, highlighting the suitability of Graphical Processing Units (GPUs) to this aim. Experimental results show that parallel SVM and XGB algorithms significantly improve the classification times in comparison with their serial counterparts.
Collapse
Affiliation(s)
- Bernardo Petracchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy
| | - Emanuele Torti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy
| | - Elisa Marenzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy
| | - Francesco Leporati
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy
| |
Collapse
|
14
|
Fang YJ, Huang CW, Karmakar R, Mukundan A, Tsao YM, Yang KY, Wang HC. Assessment of Narrow-Band Imaging Algorithm for Video Capsule Endoscopy Based on Decorrelated Color Space for Esophageal Cancer: Part II, Detection and Classification of Esophageal Cancer. Cancers (Basel) 2024; 16:572. [PMID: 38339322 PMCID: PMC10854620 DOI: 10.3390/cancers16030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Esophageal carcinoma (EC) is a prominent contributor to cancer-related mortality since it lacks discernible features in its first phases. Multiple studies have shown that narrow-band imaging (NBI) has superior accuracy, sensitivity, and specificity in detecting EC compared to white light imaging (WLI). Thus, this study innovatively employs a color space linked to décor to transform WLIs into NBIs, offering a novel approach to enhance the detection capabilities of EC in its early stages. In this study a total of 3415 WLI along with the corresponding 3415 simulated NBI images were used for analysis combined with the YOLOv5 algorithm to train the WLI images and the NBI images individually showcasing the adaptability of advanced object detection techniques in the context of medical image analysis. The evaluation of the model's performance was based on the produced confusion matrix and five key metrics: precision, recall, specificity, accuracy, and F1-score of the trained model. The model underwent training to accurately identify three specific manifestations of EC, namely dysplasia, squamous cell carcinoma (SCC), and polyps demonstrates a nuanced and targeted analysis, addressing diverse aspects of EC pathology for a more comprehensive understanding. The NBI model effectively enhanced both its recall and accuracy rates in detecting dysplasia cancer, a pre-cancerous stage that might improve the overall five-year survival rate. Conversely, the SCC category decreased its accuracy and recall rate, although the NBI and WLI models performed similarly in recognizing the polyp. The NBI model demonstrated an accuracy of 0.60, 0.81, and 0.66 in the dysplasia, SCC, and polyp categories, respectively. Additionally, it attained a recall rate of 0.40, 0.73, and 0.76 in the same categories. The WLI model demonstrated an accuracy of 0.56, 0.99, and 0.65 in the dysplasia, SCC, and polyp categories, respectively. Additionally, it obtained a recall rate of 0.39, 0.86, and 0.78 in the same categories, respectively. The limited number of training photos is the reason for the suboptimal performance of the NBI model which can be improved by increasing the dataset.
Collapse
Affiliation(s)
- Yu-Jen Fang
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, No. 579, Sec. 2, Yunlin Rd., Dou-Liu 64041, Taiwan;
- Department of Internal Medicine, National Taiwan University College of Medicine, No. 1, Jen Ai Rd., Sec. 1, Taipei 10051, Taiwan
| | - Chien-Wei Huang
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st Rd., Lingya District, Kaohsiung 80284, Taiwan;
- Department of Nursing, Tajen University, 20, Weixin Rd., Yanpu Township, Pingtung County 90741, Taiwan
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (A.M.); (Y.-M.T.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (A.M.); (Y.-M.T.)
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (A.M.); (Y.-M.T.)
| | - Kai-Yao Yang
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st Rd., Lingya District, Kaohsiung 80284, Taiwan;
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan; (R.K.); (A.M.); (Y.-M.T.)
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chia Yi 62247, Taiwan
- Hitspectra Intelligent Technology Co., Ltd., 4F, No. 2, Fuxing 4th Rd., Qianzhen District, Kaohsiung 80661, Taiwan
| |
Collapse
|
15
|
Rahman A, Debnath T, Kundu D, Khan MSI, Aishi AA, Sazzad S, Sayduzzaman M, Band SS. Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities. AIMS Public Health 2024; 11:58-109. [PMID: 38617415 PMCID: PMC11007421 DOI: 10.3934/publichealth.2024004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/18/2023] [Indexed: 04/16/2024] Open
Abstract
In recent years, machine learning (ML) and deep learning (DL) have been the leading approaches to solving various challenges, such as disease predictions, drug discovery, medical image analysis, etc., in intelligent healthcare applications. Further, given the current progress in the fields of ML and DL, there exists the promising potential for both to provide support in the realm of healthcare. This study offered an exhaustive survey on ML and DL for the healthcare system, concentrating on vital state of the art features, integration benefits, applications, prospects and future guidelines. To conduct the research, we found the most prominent journal and conference databases using distinct keywords to discover scholarly consequences. First, we furnished the most current along with cutting-edge progress in ML-DL-based analysis in smart healthcare in a compendious manner. Next, we integrated the advancement of various services for ML and DL, including ML-healthcare, DL-healthcare, and ML-DL-healthcare. We then offered ML and DL-based applications in the healthcare industry. Eventually, we emphasized the research disputes and recommendations for further studies based on our observations.
Collapse
Affiliation(s)
- Anichur Rahman
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanoy Debnath
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
- Department of CSE, Green University of Bangladesh, 220/D, Begum Rokeya Sarani, Dhaka -1207, Bangladesh
| | - Dipanjali Kundu
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Md. Saikat Islam Khan
- Department of CSE, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Airin Afroj Aishi
- Department of Computing and Information System, Daffodil International University, Savar, Dhaka, Bangladesh
| | - Sadia Sazzad
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Mohammad Sayduzzaman
- Department of CSE, National Institute of Textile Engineering and Research (NITER), Constituent Institute of the University of Dhaka, Savar, Dhaka-1350
| | - Shahab S. Band
- Department of Information Management, International Graduate School of Artificial Intelligence, National Yunlin University of Science and Technology, Taiwan
| |
Collapse
|
16
|
Huang HY, Hsiao YP, Karmakar R, Mukundan A, Chaudhary P, Hsieh SC, Wang HC. A Review of Recent Advances in Computer-Aided Detection Methods Using Hyperspectral Imaging Engineering to Detect Skin Cancer. Cancers (Basel) 2023; 15:5634. [PMID: 38067338 PMCID: PMC10705122 DOI: 10.3390/cancers15235634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 08/15/2024] Open
Abstract
Skin cancer, a malignant neoplasm originating from skin cell types including keratinocytes, melanocytes, and sweat glands, comprises three primary forms: basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and malignant melanoma (MM). BCC and SCC, while constituting the most prevalent categories of skin cancer, are generally considered less aggressive compared to MM. Notably, MM possesses a greater capacity for invasiveness, enabling infiltration into adjacent tissues and dissemination via both the circulatory and lymphatic systems. Risk factors associated with skin cancer encompass ultraviolet (UV) radiation exposure, fair skin complexion, a history of sunburn incidents, genetic predisposition, immunosuppressive conditions, and exposure to environmental carcinogens. Early detection of skin cancer is of paramount importance to optimize treatment outcomes and preclude the progression of disease, either locally or to distant sites. In pursuit of this objective, numerous computer-aided diagnosis (CAD) systems have been developed. Hyperspectral imaging (HSI), distinguished by its capacity to capture information spanning the electromagnetic spectrum, surpasses conventional RGB imaging, which relies solely on three color channels. Consequently, this study offers a comprehensive exploration of recent CAD investigations pertaining to skin cancer detection and diagnosis utilizing HSI, emphasizing diagnostic performance parameters such as sensitivity and specificity.
Collapse
Affiliation(s)
- Hung-Yi Huang
- Department of Dermatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chia Yi City 60002, Taiwan;
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan;
- Institute of Medicine, School of Medicine, Chung Shan Medical University, No.110, Sec. 1, Jianguo N. Rd., South District, Taichung City 40201, Taiwan
| | - Riya Karmakar
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
| | - Pramod Chaudhary
- Department of Aeronautical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600 062, India;
| | - Shang-Chin Hsieh
- Department of Plastic Surgery, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st. Rd., Lingya District, Kaohsiung 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi City 62102, Taiwan; (R.K.); (A.M.)
- Department of Medical Research, Dalin Tzu Chi General Hospital, No. 2, Min-Sheng Rd., Dalin Town, Chia Yi City 62247, Taiwan
- Technology Development, Hitspectra Intelligent Technology Co., Ltd., Kaohsiung 80661, Taiwan
| |
Collapse
|
17
|
Lu S, Tsao YM, Mukundan A, Huang CW, Wang YK, Wu IC, Wang HC. Hyperspectral imaging applied to YOLOv5 to identify early esophageal cancer. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS XIII 2023. [DOI: 10.1117/12.2688665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
18
|
Tsao Y, Mukundan A, Lu S, Wang HC, Wang YP, Lu CL. Development of narrow-band image imaging based on hyperspectral image conversion technology for capsule endoscopy. OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS XIII 2023. [DOI: 10.1117/12.2688844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
19
|
Leon R, Fabelo H, Ortega S, Cruz-Guerrero IA, Campos-Delgado DU, Szolna A, Piñeiro JF, Espino C, O'Shanahan AJ, Hernandez M, Carrera D, Bisshopp S, Sosa C, Balea-Fernandez FJ, Morera J, Clavo B, Callico GM. Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection. NPJ Precis Oncol 2023; 7:119. [PMID: 37964078 PMCID: PMC10646050 DOI: 10.1038/s41698-023-00475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.
Collapse
Affiliation(s)
- Raquel Leon
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| | - Himar Fabelo
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain.
| | - Samuel Ortega
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Nofima, Norwegian Institute of Food Fisheries and Aquaculture Research, Tromsø, Norway
| | - Ines A Cruz-Guerrero
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pediatric Plastic and Reconstructive Surgery, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Daniel Ulises Campos-Delgado
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Adam Szolna
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan F Piñeiro
- Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carlos Espino
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Aruma J O'Shanahan
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Hernandez
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Carrera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Sara Bisshopp
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Coralia Sosa
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Francisco J Balea-Fernandez
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Department of Psychology, Sociology and Social Work, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jesus Morera
- Department of Neurosurgery, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Bernardino Clavo
- Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Las Palmas de Gran Canaria, Spain
- Research Unit, University Hospital Doctor Negrin of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Gustavo M Callico
- Research Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
20
|
Riaz S, Naeem A, Malik H, Naqvi RA, Loh WK. Federated and Transfer Learning Methods for the Classification of Melanoma and Nonmelanoma Skin Cancers: A Prospective Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:8457. [PMID: 37896548 PMCID: PMC10611214 DOI: 10.3390/s23208457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
Skin cancer is considered a dangerous type of cancer with a high global mortality rate. Manual skin cancer diagnosis is a challenging and time-consuming method due to the complexity of the disease. Recently, deep learning and transfer learning have been the most effective methods for diagnosing this deadly cancer. To aid dermatologists and other healthcare professionals in classifying images into melanoma and nonmelanoma cancer and enabling the treatment of patients at an early stage, this systematic literature review (SLR) presents various federated learning (FL) and transfer learning (TL) techniques that have been widely applied. This study explores the FL and TL classifiers by evaluating them in terms of the performance metrics reported in research studies, which include true positive rate (TPR), true negative rate (TNR), area under the curve (AUC), and accuracy (ACC). This study was assembled and systemized by reviewing well-reputed studies published in eminent fora between January 2018 and July 2023. The existing literature was compiled through a systematic search of seven well-reputed databases. A total of 86 articles were included in this SLR. This SLR contains the most recent research on FL and TL algorithms for classifying malignant skin cancer. In addition, a taxonomy is presented that summarizes the many malignant and non-malignant cancer classes. The results of this SLR highlight the limitations and challenges of recent research. Consequently, the future direction of work and opportunities for interested researchers are established that help them in the automated classification of melanoma and nonmelanoma skin cancers.
Collapse
Affiliation(s)
- Shafia Riaz
- Department of Computer Science, National College of Business Administration & Economics Sub Campus Multan, Multan 60000, Pakistan; (S.R.); (H.M.)
| | - Ahmad Naeem
- Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan;
| | - Hassaan Malik
- Department of Computer Science, National College of Business Administration & Economics Sub Campus Multan, Multan 60000, Pakistan; (S.R.); (H.M.)
- Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan;
| | - Rizwan Ali Naqvi
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Woong-Kee Loh
- School of Computing, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
21
|
Zhou Z, Qiu Q, Liu H, Ge X, Li T, Xing L, Yang R, Yin Y. Automatic Detection of Brain Metastases in T1-Weighted Construct-Enhanced MRI Using Deep Learning Model. Cancers (Basel) 2023; 15:4443. [PMID: 37760413 PMCID: PMC10526374 DOI: 10.3390/cancers15184443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
As a complication of malignant tumors, brain metastasis (BM) seriously threatens patients' survival and quality of life. Accurate detection of BM before determining radiation therapy plans is a paramount task. Due to the small size and heterogeneous number of BMs, their manual diagnosis faces enormous challenges. Thus, MRI-based artificial intelligence-assisted BM diagnosis is significant. Most of the existing deep learning (DL) methods for automatic BM detection try to ensure a good trade-off between precision and recall. However, due to the objective factors of the models, higher recall is often accompanied by higher number of false positive results. In real clinical auxiliary diagnosis, radiation oncologists are required to spend much effort to review these false positive results. In order to reduce false positive results while retaining high accuracy, a modified YOLOv5 algorithm is proposed in this paper. First, in order to focus on the important channels of the feature map, we add a convolutional block attention model to the neck structure. Furthermore, an additional prediction head is introduced for detecting small-size BMs. Finally, to distinguish between cerebral vessels and small-size BMs, a Swin transformer block is embedded into the smallest prediction head. With the introduction of the F2-score index to determine the most appropriate confidence threshold, the proposed method achieves a precision of 0.612 and recall of 0.904. Compared with existing methods, our proposed method shows superior performance with fewer false positive results. It is anticipated that the proposed method could reduce the workload of radiation oncologists in real clinical auxiliary diagnosis.
Collapse
Affiliation(s)
- Zichun Zhou
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
| | - Qingtao Qiu
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
- Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
| | - Huiling Liu
- Department of Oncology, Binzhou People’s Hospital, Binzhou 256610, China
- Third Clinical Medical College, Xinjiang Medical University, Urumqi 830011, China
| | - Xuanchu Ge
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tengxiang Li
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Ligang Xing
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Runtao Yang
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai 264209, China
| | - Yong Yin
- Department of Radiation Oncology and Physics, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
22
|
Elshahawy M, Elnemr A, Oproescu M, Schiopu AG, Elgarayhi A, Elmogy MM, Sallah M. Early Melanoma Detection Based on a Hybrid YOLOv5 and ResNet Technique. Diagnostics (Basel) 2023; 13:2804. [PMID: 37685342 PMCID: PMC10486497 DOI: 10.3390/diagnostics13172804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer, specifically melanoma, is a serious health issue that arises from the melanocytes, the cells that produce melanin, the pigment responsible for skin color. With skin cancer on the rise, the timely identification of skin lesions is crucial for effective treatment. However, the similarity between some skin lesions can result in misclassification, which is a significant problem. It is important to note that benign skin lesions are more prevalent than malignant ones, which can lead to overly cautious algorithms and incorrect results. As a solution, researchers are developing computer-assisted diagnostic tools to detect malignant tumors early. First, a new model based on the combination of "you only look once" (YOLOv5) and "ResNet50" is proposed for melanoma detection with its degree using humans against a machine with 10,000 training images (HAM10000). Second, feature maps integrate gradient change, which allows rapid inference, boosts precision, and reduces the number of hyperparameters in the model, making it smaller. Finally, the current YOLOv5 model is changed to obtain the desired outcomes by adding new classes for dermatoscopic images of typical lesions with pigmented skin. The proposed approach improves melanoma detection with a real-time speed of 0.4 MS of non-maximum suppression (NMS) per image. The performance metrics average is 99.0%, 98.6%, 98.8%, 99.5, 98.3%, and 98.7% for the precision, recall, dice similarity coefficient (DSC), accuracy, mean average precision (MAP) from 0.0 to 0.5, and MAP from 0.5 to 0.95, respectively. Compared to current melanoma detection approaches, the provided approach is more efficient in using deep features.
Collapse
Affiliation(s)
- Manar Elshahawy
- Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Elnemr
- Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (A.E.); (A.E.)
| | - Mihai Oproescu
- Faculty of Electronics, Communication, and Computer Science, University of Pitesti, 110040 Pitesti, Romania
| | - Adriana-Gabriela Schiopu
- Department of Manufacturing and Industrial Management, Faculty of Mechanics and Technology, University of Pitesti, 110040 Pitesti, Romania;
| | - Ahmed Elgarayhi
- Applied Mathematical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (A.E.); (A.E.)
| | - Mohammed M. Elmogy
- Information Technology Department, Faculty of Computers and Information, Mansoura University, Mansoura 35516, Egypt;
| | - Mohammed Sallah
- Department of Physics, College of Sciences, University of Bisha, P.O. Box 344, Bisha 61922, Saudi Arabia;
| |
Collapse
|
23
|
Liao WC, Mukundan A, Sadiaza C, Tsao YM, Huang CW, Wang HC. Systematic meta-analysis of computer-aided detection to detect early esophageal cancer using hyperspectral imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:4383-4405. [PMID: 37799695 PMCID: PMC10549751 DOI: 10.1364/boe.492635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 10/07/2023]
Abstract
One of the leading causes of cancer deaths is esophageal cancer (EC) because identifying it in early stage is challenging. Computer-aided diagnosis (CAD) could detect the early stages of EC have been developed in recent years. Therefore, in this study, complete meta-analysis of selected studies that only uses hyperspectral imaging to detect EC is evaluated in terms of their diagnostic test accuracy (DTA). Eight studies are chosen based on the Quadas-2 tool results for systematic DTA analysis, and each of the methods developed in these studies is classified based on the nationality of the data, artificial intelligence, the type of image, the type of cancer detected, and the year of publishing. Deeks' funnel plot, forest plot, and accuracy charts were made. The methods studied in these articles show the automatic diagnosis of EC has a high accuracy, but external validation, which is a prerequisite for real-time clinical applications, is lacking.
Collapse
Affiliation(s)
- Wei-Chih Liao
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Arvind Mukundan
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
| | - Cleorita Sadiaza
- Department of Mechanical Engineering, Far Eastern University, P. Paredes St., Sampaloc, Manila, 1015, Philippines
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
| | - Chien-Wei Huang
- Department of Gastroenterology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st.Rd., Lingya District, Kaohsiung City 80284, Taiwan
- Department of Nursing, Tajen University, 20, Weixin Rd., Yanpu Township, Pingtung County 90741, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin, Chiayi, 62247, Taiwan
- Director of Technology Development, Hitspectra Intelligent Technology Co., Ltd., 4F., No. 2, Fuxing 4th Rd., Qianzhen Dist., Kaohsiung City 80661, Taiwan
| |
Collapse
|
24
|
Mukundan A, Patel A, Saraswat KD, Tomar A, Wang HC. Design of a Foldable Laser-Based Energy Transmission System for a Mini Lunar Rover. 2023 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER, COMMUNICATIONS AND MECHATRONICS ENGINEERING (ICECCME) 2023. [DOI: 10.1109/iceccme57830.2023.10252208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Affiliation(s)
- Arvind Mukundan
- National Chung Cheng University City,Department of Mechanical Engineering and Advanced Institute of Manufacturing With High Tech Innovations,Chia Yi,62102
| | - Akash Patel
- Luleå University of Technolog City,Department of Computer Science, Electrical and Space Engineering,Sweden
| | | | - Ankit Tomar
- Indian Institute of Space Science & Technology,Department of Aerospace,Kerala,India,695547
| | - Hsiang-Chen Wang
- National Chung Cheng University City,Department of Mechanical Engineering and Advanced Institute of Manufacturing With High Tech Innovations,Chia Yi,62102
| |
Collapse
|
25
|
Mukundan A, Patel A, Saraswat KD, Tomar A, Wang H.. Spriallift Mechanism Based Drill for Deep Subsurface Lunar Exploration. AIAA AVIATION 2023 FORUM 2023. [DOI: 10.2514/6.2023-4123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Affiliation(s)
| | | | | | - Ankit Tomar
- Indian Institute of Space Science and Technology
| | | |
Collapse
|
26
|
Mukundan A, Patel A, Shastri B, Bhatt H, Phen A, Wang HC. The Dvaraka Initiative: Mars’s First Permanent Human Settlement Capable of Self-Sustenance. AEROSPACE 2023; 10:265. [DOI: 10.3390/aerospace10030265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
From the farthest reaches of the universe to our own galaxy, there are many different celestial bodies that, even though they are very different, each have their own way of being beautiful. Earth, the planet with the best location, has been home to people for as long as we can remember. Even though we cannot be more thankful for all that Earth has given us, the human population needs to grow so that Earth is not the only place where people can live. Mars, which is right next to Earth, is the answer to this problem. Mars is the closest planet and might be able to support human life because it is close to Earth and shares many things in common. This paper will talk about how the first settlement on Mars could be planned and consider a 1000-person colony and the best place to settle on Mars, and make suggestions for the settlement’s technical, architectural, social, and economic layout. By putting together assumptions, research, and estimates, the first settlement project proposed in this paper will suggest the best way to colonize, explore, and live on Mars, which is our sister planet.
Collapse
Affiliation(s)
- Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| | - Akash Patel
- Robotics & AI Team, Department of Computer, Electrical and Space Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Bharadwaj Shastri
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| | - Heeral Bhatt
- Department of Computer, Electrical and Space Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Alice Phen
- Department of Computer, Electrical and Space Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| |
Collapse
|
27
|
Mukundan A, Tsao YM, Cheng WM, Lin FC, Wang HC. Automatic Counterfeit Currency Detection Using a Novel Snapshot Hyperspectral Imaging Algorithm. SENSORS (BASEL, SWITZERLAND) 2023; 23:2026. [PMID: 36850623 PMCID: PMC9967082 DOI: 10.3390/s23042026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In this study, a snapshot-based hyperspectral imaging (HSI) algorithm that converts RGB images to HSI images is designed using the Raspberry Pi environment. A Windows-based Python application is also developed to control the Raspberry Pi camera and processor. The mean gray values (MGVs) of two distinct regions of interest (ROIs) are selected from three samples of 100 NTD Taiwanese currency notes and compared with three samples of counterfeit 100 NTD notes. Results suggest that the currency notes can be easily differentiated on the basis of MGV values within shorter wavelengths, between 400 nm and 500 nm. However, the MGV values are similar in longer wavelengths. Moreover, if an ROI has a security feature, then the classification method is considerably more efficient. The key features of the module include portability, lower cost, a lack of moving parts, and no processing of images required.
Collapse
Affiliation(s)
- Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI) and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
| | - Yu-Ming Tsao
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI) and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
| | - Wen-Min Cheng
- College of Management, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan
- Medical Devices R&D Service Development, Metal Industries Research & Development Centre, 1001 Kaonan Highway, Nanzi District, Kaohsiung 80284, Taiwan
| | - Fen-Chi Lin
- Ophthalmology, Kaohsiung Armed Forces General Hospital, 2, Zhongzheng 1st.Rd., Lingya District, Kaohsiung 80284, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI) and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Rd., Min Hsiung, Chia Yi 62102, Taiwan
- Director of Technology Development, Hitspectra Intelligent Technology Co., Ltd., 4F, No.2, Fuxing 4th Rd., Qianzhen District, Kaohsiung 80661, Taiwan
| |
Collapse
|