1
|
Friedrich MU, Roenn AJ, Palmisano C, Alty J, Paschen S, Deuschl G, Ip CW, Volkmann J, Muthuraman M, Peach R, Reich MM. Validation and application of computer vision algorithms for video-based tremor analysis. NPJ Digit Med 2024; 7:165. [PMID: 38906946 PMCID: PMC11192937 DOI: 10.1038/s41746-024-01153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
Tremor is one of the most common neurological symptoms. Its clinical and neurobiological complexity necessitates novel approaches for granular phenotyping. Instrumented neurophysiological analyses have proven useful, but are highly resource-intensive and lack broad accessibility. In contrast, bedside scores are simple to administer, but lack the granularity to capture subtle but relevant tremor features. We utilise the open-source computer vision pose tracking algorithm Mediapipe to track hands in clinical video recordings and use the resulting time series to compute canonical tremor features. This approach is compared to marker-based 3D motion capture, wrist-worn accelerometry, clinical scoring and a second, specifically trained tremor-specific algorithm in two independent clinical cohorts. These cohorts consisted of 66 patients diagnosed with essential tremor, assessed in different task conditions and states of deep brain stimulation therapy. We find that Mediapipe-derived tremor metrics exhibit high convergent clinical validity to scores (Spearman's ρ = 0.55-0.86, p≤ .01) as well as an accuracy of up to 2.60 mm (95% CI [-3.13, 8.23]) and ≤0.21 Hz (95% CI [-0.05, 0.46]) for tremor amplitude and frequency measurements, matching gold-standard equipment. Mediapipe, but not the disease-specific algorithm, was capable of analysing videos involving complex configurational changes of the hands. Moreover, it enabled the extraction of tremor features with diagnostic and prognostic relevance, a dimension which conventional tremor scores were unable to provide. Collectively, this demonstrates that current computer vision algorithms can be transformed into an accurate and highly accessible tool for video-based tremor analysis, yielding comparable results to gold standard tremor recordings.
Collapse
Affiliation(s)
- Maximilian U Friedrich
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Department of Neurology, University Hospital Wurzburg, Wuerzburg, Germany.
| | - Anna-Julia Roenn
- Department of Neurology, University Hospital Wurzburg, Wuerzburg, Germany
| | - Chiara Palmisano
- Department of Neurology, University Hospital Wurzburg, Wuerzburg, Germany
| | - Jane Alty
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | | | | - Chi Wang Ip
- Department of Neurology, University Hospital Wurzburg, Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Wurzburg, Wuerzburg, Germany
| | | | - Robert Peach
- Department of Neurology, University Hospital Wurzburg, Wuerzburg, Germany
- Department of Brain Sciences, Imperial College, London, UK
| | - Martin M Reich
- Department of Neurology, University Hospital Wurzburg, Wuerzburg, Germany.
| |
Collapse
|
2
|
Arrué P, Laksari K, Russo M, La Placa T, Smith M, Toosizadeh N. Associating frailty and dynamic dysregulation between motor and cardiac autonomic systems. FRONTIERS IN AGING 2024; 5:1396636. [PMID: 38803576 PMCID: PMC11128670 DOI: 10.3389/fragi.2024.1396636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Frailty is a geriatric syndrome associated with the lack of physiological reserve and consequent adverse outcomes (therapy complications and death) in older adults. Recent research has shown associations between heart rate (HR) dynamics (HR changes during physical activity) with frailty. The goal of the present study was to determine the effect of frailty on the interconnection between motor and cardiac systems during a localized upper-extremity function (UEF) test. Fifty-six individuals aged 65 or above were recruited and performed the previously developed UEF test consisting of 20-s rapid elbow flexion with the right arm. Frailty was assessed using the Fried phenotype. Wearable gyroscopes and electrocardiography were used to measure motor function and HR dynamics. In this study, the interconnection between motor (angular displacement) and cardiac (HR) performance was assessed, using convergent cross-mapping (CCM). A significantly weaker interconnection was observed among pre-frail and frail participants compared to non-frail individuals (p < 0.01, effect size = 0.81 ± 0.08). Using logistic models, pre-frailty and frailty were identified with sensitivity and specificity of 82%-89%, using motor, HR dynamics, and interconnection parameters. Findings suggested a strong association between cardiac-motor interconnection and frailty. Adding CCM parameters in a multimodal model may provide a promising measure of frailty.
Collapse
Affiliation(s)
- Patricio Arrué
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Kaveh Laksari
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, United States
| | - Mark Russo
- Department of Surgery, Division of Cardiac Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Tana La Placa
- Department of Surgery, Division of Cardiac Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Meghan Smith
- Department of Surgery, Division of Cardiac Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- Arizona Center on Aging (ACOA), Department of Medicine, University of Arizona, Tucson, AZ, United States
- Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Smid A, Dominguez-Vega ZT, van Laar T, Oterdoom DLM, Absalom AR, van Egmond ME, Drost G, van Dijk JMC. Objective clinical registration of tremor, bradykinesia, and rigidity during awake stereotactic neurosurgery: a scoping review. Neurosurg Rev 2024; 47:81. [PMID: 38355824 PMCID: PMC10866747 DOI: 10.1007/s10143-024-02312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Tremor, bradykinesia, and rigidity are incapacitating motor symptoms that can be suppressed with stereotactic neurosurgical treatment like deep brain stimulation (DBS) and ablative surgery (e.g., thalamotomy, pallidotomy). Traditionally, clinicians rely on clinical rating scales for intraoperative evaluation of these motor symptoms during awake stereotactic neurosurgery. However, these clinical scales have a relatively high inter-rater variability and rely on experienced raters. Therefore, objective registration (e.g., using movement sensors) is a reasonable extension for intraoperative assessment of tremor, bradykinesia, and rigidity. The main goal of this scoping review is to provide an overview of electronic motor measurements during awake stereotactic neurosurgery. The protocol was based on the PRISMA extension for scoping reviews. After a systematic database search (PubMed, Embase, and Web of Science), articles were screened for relevance. Hundred-and-three articles were subject to detailed screening. Key clinical and technical information was extracted. The inclusion criteria encompassed use of electronic motor measurements during stereotactic neurosurgery performed under local anesthesia. Twenty-three articles were included. These studies had various objectives, including correlating sensor-based outcome measures to clinical scores, identifying optimal DBS electrode positions, and translating clinical assessments to objective assessments. The studies were highly heterogeneous in device choice, sensor location, measurement protocol, design, outcome measures, and data analysis. This review shows that intraoperative quantification of motor symptoms is still limited by variable signal analysis techniques and lacking standardized measurement protocols. However, electronic motor measurements can complement visual evaluations and provide objective confirmation of correct placement of the DBS electrode and/or lesioning. On the long term, this might benefit patient outcomes and provide reliable outcome measures in scientific research.
Collapse
Affiliation(s)
- Annemarie Smid
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands.
| | - Zeus T Dominguez-Vega
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - Anthony R Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - Martje E van Egmond
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - Gea Drost
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1 HPC AB71, 9713 GZ, Groningen, Netherlands
| |
Collapse
|
4
|
Smid A, Oterdoom DLM, Pauwels RWJ, Tamasi K, Elting JWJ, Absalom AR, van Laar T, van Dijk JMC, Drost G. The Relevance of Intraoperative Clinical and Accelerometric Measurements for Thalamotomy Outcome. J Clin Med 2023; 12:5887. [PMID: 37762828 PMCID: PMC10532071 DOI: 10.3390/jcm12185887] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Thalamotomy alleviates medication-refractory tremors in patients with movement disorders such as Parkinson's Disease (PD), Essential tremor (ET), and Holmes tremor (HT). However, limited data are available on tremor intensity during different thalamotomy stages. Also, the predictive value of the intraoperative tremor status for treatment outcomes remains unclear. Therefore, we aimed to quantify tremor status during thalamotomy and postoperatively. Data were gathered between January 2020 and June 2023 during consecutive unilateral thalamotomy procedures in patients with PD (n = 13), ET (n = 8), and HT (n = 3). MDS-UPDRS scores and tri-axial accelerometry data were obtained during rest, postural, and intention tremor tests. Measurements were performed intraoperatively (1) before lesioning-probe insertion, (2) directly after lesioning-probe insertion, (3) during coagulation, (4) directly after coagulation, and (5) 4-6 months post-surgery. Accelerometric data were recorded continuously during the coagulation process. Outcome measures included MDS-UPDRS tremor scores and accelerometric parameters (peak frequency, tremor amplitude, and area under the curve of power (AUCP)). Tremor intensity was assessed for the insertion effect (1-2), during coagulation (3), post-coagulation effect (1-4), and postoperative effect (1-5). Following insertion and coagulation, tremor intensity improved significantly compared to baseline (p < 0.001). The insertion effect clearly correlated with the postoperative effect (ρ = 0.863, p < 0.001). Both tremor amplitude and AUCP declined gradually during coagulation. Peak frequency did not change significantly intraoperatively. In conclusion, the study data show that both the intraoperative insertion effect and the post-coagulation effect are good predictors for thalamotomy outcomes.
Collapse
Affiliation(s)
- Annemarie Smid
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (R.W.J.P.); (K.T.); (J.M.C.v.D.); (G.D.)
| | - D. L. Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (R.W.J.P.); (K.T.); (J.M.C.v.D.); (G.D.)
| | - Rik W. J. Pauwels
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (R.W.J.P.); (K.T.); (J.M.C.v.D.); (G.D.)
| | - Katalin Tamasi
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (R.W.J.P.); (K.T.); (J.M.C.v.D.); (G.D.)
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan Willem J. Elting
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.J.E.); (T.v.L.)
| | - Anthony R. Absalom
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.J.E.); (T.v.L.)
| | - J. Marc C. van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (R.W.J.P.); (K.T.); (J.M.C.v.D.); (G.D.)
| | - Gea Drost
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (D.L.M.O.); (R.W.J.P.); (K.T.); (J.M.C.v.D.); (G.D.)
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.W.J.E.); (T.v.L.)
| |
Collapse
|
5
|
Smid A, Pauwels RWJ, Elting JWJ, Everlo CSJ, van Dijk JMC, Oterdoom DLM, van Laar T, Tamasi K, van der Stouwe AMM, Drost G. A Novel Accelerometry Method to Perioperatively Quantify Essential Tremor Based on Fahn-Tolosa-Marin Criteria. J Clin Med 2023; 12:4235. [PMID: 37445270 DOI: 10.3390/jcm12134235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The disease status, progression, and treatment effect of essential tremor (ET) patients are currently assessed with clinical scores, such as the Fahn-Tolosa-Marin Clinical Rating Scale for Tremor (FTM). The use of objective and rater-independent monitoring of tremors may improve clinical care for patients with ET. Therefore, the focus of this study is to develop an objective accelerometry-based method to quantify ET, based on FTM criteria. Thirteen patients with ET and thirteen matched healthy participants underwent FTM tests to rate tremor severity, paired with tri-axial accelerometric measurements at the index fingers. Analogue FTM assessments were performed by four independent raters based on video recordings. Quantitative measures were derived from the accelerometric data, e.g., the area under the curve of power in the 4-8 Hz frequency band (AUCP) and maximal tremor amplitude. As such, accelerometric tremor scores were computed, using thresholds based on healthy measurements and FTM criteria. Agreement between accelerometric and clinical FTM scores was analyzed with Cohen's kappa coefficient. It was assessed whether there was a relationship between mean FTM scores and the natural logarithm (ln) of the accelerometric outcome measures using linear regression. The agreement between accelerometric and FTM scores was substantial for resting and intention tremor tests (≥72.7%). However, the agreement between accelerometric postural tremor data and clinical FTM ratings (κ = 0.459) was low, although their logarithmic (ln) relationship was substantial (R2 ≥ 0.724). Accelerometric test-retest reliability was good to excellent (ICC ≥ 0.753). This pilot study shows that tremors can be quantified with accelerometry, using healthy thresholds and FTM criteria. The test-retest reliability of the accelerometric tremor scoring algorithm indicates that our low-cost accelerometry-based approach is a promising one. The proposed easy-to-use technology could diminish the rater dependency of FTM scores and enable physicians to monitor ET patients more objectively in clinical, intraoperative, and home settings.
Collapse
Affiliation(s)
- Annemarie Smid
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rik W J Pauwels
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan Willem J Elting
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Cheryl S J Everlo
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Katalin Tamasi
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - A M Madelein van der Stouwe
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gea Drost
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|