1
|
Zheng D, Guo J, Liang Z, Jin Y, Ding Y, Liu J, Qi C, Shi K, Xie L, Zhu M, Wang L, Hu Z, Yang Z, Liu Q, Li X, Ning W, Gao J. Supramolecular Nanofibers Ameliorate Bleomycin-Induced Pulmonary Fibrosis by Restoring Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401327. [PMID: 38725147 PMCID: PMC11267363 DOI: 10.1002/advs.202401327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Indexed: 07/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease, with limited therapeutic options available. Impaired autophagy resulting from aberrant TRB3/p62 protein-protein interactions (PPIs) contributes to the progression of IPF. Restoration of autophagy by modulating the TRB3/p62 PPIs has rarely been reported for the treatment of IPF. Herein, peptide nanofibers are developed that specifically bind to TRB3 protein and explored their potential as a therapeutic approach for IPF. By conjugating with the self-assembling fragment (Ac-GFFY), a TRB3-binding peptide motif A2 allows for the formation of nanofibers with a stable α-helix secondary structure. The resulting peptide (Ac-GFFY-A2) nanofibers exhibit specific high-affinity binding to TRB3 protein in saline buffer and better capacity of cellular uptake to A2 peptide. Furthermore, the TRB3-targeting peptide nanofibers efficiently interfere with the aberrant TRB3/p62 PPIs in activated fibroblasts and fibrotic lung tissue of mice, thereby restoring autophagy dysfunction. The TRB3-targeting peptide nanofibers inhibit myofibroblast differentiation, collagen production, and fibroblast migration in vitro is demonstrated, as well as bleomycin-induced pulmonary fibrosis in vivo. This study provides a supramolecular method to modulate PPIs and highlights a promising strategy for treating IPF diseases by restoring autophagy.
Collapse
Affiliation(s)
- Debin Zheng
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jiasen Guo
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Ziyi Liang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Yueyue Jin
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Yinghao Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jingfei Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Chao Qi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Kaiwen Shi
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Limin Xie
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Meiqi Zhu
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - Zhiwen Hu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Qian Liu
- Department of UrologyTianjin First Central HospitalTianjin300192P. R. China
| | - Xiaoxue Li
- Beijing Key Laboratory of Disaster MedicineMedical Innovation Research Division of the Chinese PLA General HospitalNo. 28 Fu Xing RoadBeijing100853P. R. China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive Materials (Ministry of Education)College of Life SciencesNankai International Advanced Research Institute (SHENZHEN FUTIAN)Nankai UniversityTianjin300071P. R. China
| |
Collapse
|
2
|
Brockmann T, Simon A, Brockmann C, Fuchsluger TA, Pleyer U, Walckling M. [Corneal wound healing-Pharmacological treatment]. DIE OPHTHALMOLOGIE 2024; 121:245-258. [PMID: 38411733 DOI: 10.1007/s00347-024-02021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Physiological wound healing of the cornea is a complex process and involves numerous multifactorial tissue processes. A proper wound healing, especially without the formation of light-scattering scars, is essential to preserve the integrity and function of the cornea. Misdirected wound healing is of vast clinical relevance as it can lead to corneal fibrosis and the loss of optical transparency with subsequent reduction of visual acuity, up to blindness. In addition to the understanding of the pathophysiological mechanisms, the knowledge of therapeutic concepts and options for treating corneal wound healing disorders and fibrosis is essential to counteract a permanent damage of the cornea as early as possible. Nowadays, various pharmacological and surgical options are available for treatment. The decision, appropriate selection and indication for the optimal treatment depend primarily on the genesis and clinical appearance of the corneal wound, fibrosis or scar. The treatment of wound healing disorders ranges from the use of topical therapy and supportive measures up to tissue replacement procedures. As long as the mechanical stability of the cornea is intact and wound healing processes are still ongoing, a pharmacological modulation is reasonable, which is discussed in this article.
Collapse
Affiliation(s)
- Tobias Brockmann
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Doberaner Str. 140, 18057, Rostock, Deutschland.
- Fachbereich SciTec, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Deutschland.
| | - Alexander Simon
- Fachbereich SciTec, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Deutschland
| | - Claudia Brockmann
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Doberaner Str. 140, 18057, Rostock, Deutschland
| | - Thomas A Fuchsluger
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Doberaner Str. 140, 18057, Rostock, Deutschland
| | - Uwe Pleyer
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - Marcus Walckling
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Doberaner Str. 140, 18057, Rostock, Deutschland
| |
Collapse
|
3
|
Samarelli AV, Tonelli R, Raineri G, Bruzzi G, Andrisani D, Gozzi F, Marchioni A, Costantini M, Fabbiani L, Genovese F, Pinetti D, Manicardi L, Castaniere I, Masciale V, Aramini B, Tabbì L, Rizzato S, Bettelli S, Manfredini S, Dominici M, Clini E, Cerri S. Proteomic profiling of formalin-fixed paraffine-embedded tissue reveals key proteins related to lung dysfunction in idiopathic pulmonary fibrosis. Front Oncol 2024; 13:1275346. [PMID: 38322285 PMCID: PMC10844556 DOI: 10.3389/fonc.2023.1275346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) severely affects the lung leading to aberrant deposition of extracellular matrix and parenchymal stiffness with progressive functional derangement. The limited availability of fresh tissues represents one of the major limitations to study the molecular profiling of IPF lung tissue. The primary aim of this study was to explore the proteomic profiling yield of archived formalin-fixed paraffin-embedded (FFPE) specimens of IPF lung tissues. Methods We further determined the protein expression according to respiratory functional decline at the time of biopsy. The total proteins isolated from 11 FFPE samples of IPF patients compared to 3 FFPE samples from a non-fibrotic lung defined as controls, were subjected to label-free quantitative proteomic analysis by liquid chromatography-mass spectrometry (LC-MS/MS) and resulted in the detection of about 400 proteins. Results After the pairwise comparison between controls and IPF, functional enrichment analysis identified differentially expressed proteins that were involved in extracellular matrix signaling pathways, focal adhesion and transforming growth factor β (TGF-β) signaling pathways strongly associated with IPF onset and progression. Five proteins were significantly over- expressed in the lung of IPF patients with either advanced disease stage (Stage II) or impaired pulmonary function (FVC<75, DLCO<55) compared to controls; these were lymphocyte cytosolic protein 1 (LCP1), peroxiredoxin-2 (PRDX2), transgelin 2 (TAGLN2), lumican (LUM) and mimecan (OGN) that might play a key role in the fibrogenic processes. Discussion Our work showed that the analysis of FFPE samples was able to identify key proteins that might be crucial for the IPF pathogenesis. These proteins are correlated with lung carcinogenesis or involved in the immune landscape of lung cancer, thus making possible common mechanisms between lung carcinogenesis and fibrosis progression, two pathological conditions at risk for each other in the real life.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Matteo Costantini
- Pathology Institute, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Luca Fabbiani
- Pathology Institute, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
- Immunohistochemistry Lab, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), University of Modena and Reggio Emilia, Modena, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), University of Modena and Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences-Diagnostic and Specialty Medicine (DIMEC) of the Alma Mater Studiorum, University of Bologna G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Luca Tabbì
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Simone Rizzato
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Stefania Bettelli
- Molecular Pathology and Predictive Medicine Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Samantha Manfredini
- Molecular Pathology and Predictive Medicine Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| |
Collapse
|
4
|
Sato R, Handa T, Tanizawa K, Hirai T. Variation in information needs of patients with interstitial lung disease and their family caregivers according to long-term oxygen therapy: a descriptive study. BMC Pulm Med 2023; 23:486. [PMID: 38053142 DOI: 10.1186/s12890-023-02795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The information needs of patients and their families regarding interstitial lung disease (ILD) have yet to be studied in detail, and few reports have examined the differences in information needs according to patient status. This study aimed to determine whether there are differences in information needs between outpatients with ILD and their family caregivers and whether these differences depend on long-term oxygen therapy use. METHODS Patients with fibrotic ILDs and their families who visited Kyoto University Hospital between February 2020 and March 2022 were recruited for this descriptive study. Fibrotic ILDs included idiopathic pulmonary fibrosis (IPF), other idiopathic interstitial pneumonias (IIPs) than IPF, connective tissue disease-associated ILD (CTD-ILD), and fibrotic hypersensitivity pneumonia. Data were obtained from electronic patient records and questionnaires. Descriptive data analyses were performed. RESULTS Sixty-five patients and their family caregivers were analyzed. Twenty-seven (41.5%) patients had IIPs (IPF 9 and other IIPs 18), 34 (52.3%) had CTD-ILD, and 4 (6.2%) had fibrotic hypersensitivity pneumonia. The most common relationship between the patient and their family was a spouse (67.7%), with 80% living together. The primary information needs among patients and their family caregivers were common up to the third rank but differed from the rest. Patients were interested in "when and where to contact health care providers" and "end-of-life care and advanced directives," while family caregivers were interested in "diet and nutrition" and "care and support at home." Patients with long-term oxygen therapy had higher needs for "end-of-life care and advanced directives" and "how to manage breathlessness, cough, and fatigue," while the needs for "drugs for ILD" and "acute exacerbation of ILD" were relatively low. Family caregivers were interested in "diet and nutrition" in the long-term oxygen therapy group and "acute exacerbation of ILD" in the no long-term oxygen therapy group. CONCLUSIONS This study found that the information needs of patients and their family caregivers were not the same and that the aspect of information needs differed by long-term oxygen therapy status. Healthcare providers should consider the position of the recipient of information, the appropriate time based on the patient's condition, and the necessary information.
Collapse
Affiliation(s)
- Ryuhei Sato
- Department of Critical Care Nursing, Graduate School of Medicine, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiminobu Tanizawa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|