1
|
Wang B, Li H, Wang N, Li Y, Song Z, Chen Y, Li X, Liu L, Chen H. The impact of homocysteine on patients with diabetic nephropathy: a mendelian randomization study. Acta Diabetol 2024:10.1007/s00592-024-02343-9. [PMID: 39105808 DOI: 10.1007/s00592-024-02343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND/AIMS Homocysteine (Hcy) has been associated with an increased risk of diabetic nephropathy (DN) in patients, but there is still controversy. This study aims to investigate the causal relationship between plasma Hcy and DN. METHODS A Mendelian randomization (MR) study using data from 2 samples was employed to infer causal relationships. The aggregated genetic data associated with Hcy was derived from the largest genome-wide association study (GWAS) to date, involving 44,147 individuals of European ancestry.Data on SNP-diabetic nephropathy, creatinine, and urea nitrogen were obtained from the IEU GWAS database. The analysis method employed a fixed-effect or random-effect inverse variance-weighted approach to estimate effects.Additional analysis methods were used to assess stability and sensitivity. The potential for pleiotropy was evaluated using the MR-Egger intercept test. RESULTS Using 12 SNPs as instrumental variables, two-sample MR analysis revealed no evidence of a causal relationship between genetically predicted plasma Hcy levels and diabetic nephropathy, as well as creatinine and blood urea nitrogen levels. This finding is consistent with the results obtained from other testing methods. CONCLUSIONS Two-sample Mendelian Randomization analysis found no evidence of a causal relationship between plasma homocysteine levels and diabetic nephropathy, creatinine, or urea.
Collapse
Affiliation(s)
- Baiju Wang
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China
| | - Han Li
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China
| | - Na Wang
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China
| | - Yuan Li
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China
| | - Zihua Song
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China
| | - Yajuan Chen
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China
| | - Xiaobing Li
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China
| | - Lei Liu
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China.
| | - Hanwen Chen
- Department of General Medicine, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Rencheng District, Jining, 272029, Shandong, China.
| |
Collapse
|
2
|
Schoettler JJ, Brohm K, Mindt S, Jäger E, Hahn B, Fuderer T, Lindner HA, Schneider-Lindner V, Krebs J, Neumaier M, Thiel M, Centner FS. Mortality Prediction by Kinetic Parameters of Lactate and S-Adenosylhomocysteine in a Cohort of Critically Ill Patients. Int J Mol Sci 2024; 25:6391. [PMID: 38928097 PMCID: PMC11204002 DOI: 10.3390/ijms25126391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue hypoxia is associated with the development of organ dysfunction and death in critically ill patients commonly captured using blood lactate. The kinetic parameters of serial lactate evaluations are superior at predicting mortality compared with single values. S-adenosylhomocysteine (SAH), which is also associated with hypoxia, was recently established as a useful predictor of septic organ dysfunction and death. We evaluated the performance of kinetic SAH parameters for mortality prediction compared with lactate parameters in a cohort of critically ill patients. For lactate and SAH, maxima and means as well as the normalized area scores were calculated for two periods: the first 24 h and the total study period of up to five days following ICU admission. Their performance in predicting in-hospital mortality were compared in 99 patients. All evaluated parameters of lactate and SAH were significantly higher in non-survivors compared with survivors. In univariate analysis, the predictive power for mortality of SAH was higher compared with lactate in all forms of application. Multivariable models containing SAH parameters demonstrated higher predictive values for mortality than models based on lactate parameters. The optimal models for mortality prediction incorporated both lactate and SAH parameters. Compared with lactate, SAH displayed stronger predictive power for mortality in static and dynamic application in critically ill patients.
Collapse
Affiliation(s)
- Jochen J. Schoettler
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
| | - Kathrin Brohm
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
- Merck KGaA (SQ-Animal Affairs), Frankfurterstrasse 250, 64293 Darmstadt, Germany
| | - Sonani Mindt
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Institute for Laboratory and Transfusion Medicine, Hospital Passau, Innstrasse 76, 94032 Passau, Germany
| | - Evelyn Jäger
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Bianka Hahn
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
| | - Tanja Fuderer
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
| | - Holger A. Lindner
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
| | - Verena Schneider-Lindner
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
| | - Joerg Krebs
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
| | - Michael Neumaier
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Manfred Thiel
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
| | - Franz-Simon Centner
- Department of Anesthesiology, Surgical Intensive Care Medicine and Pain Medicine, Medical Faculty Mannheim, University Medical Center Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (J.J.S.); (F.-S.C.)
| |
Collapse
|
3
|
Liu Z, Li X, Wang T, Zhang H, Li X, Xu J, Zhang Y, Zhao Z, Yang P, Zhou C, Ge Q, Zhao L. SAH and SAM/SAH ratio associate with acute kidney injury in critically ill patients: A case-control study. Clin Chim Acta 2024; 553:117726. [PMID: 38110027 DOI: 10.1016/j.cca.2023.117726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is a serious clinical emergency with an acute onset, rapid progression and poor prognosis, which has high morbidity and mortality in hospitalized patients. DNA methylation plays an important role in the occurrence and progression of kidney disease, and aberrant methylation and certain altered methylation-related metabolites have been reported in AKI patients. However, the specific alterations of methylation-related metabolites in the AKI patients were not investigated clearly. METHOD In this study, 61 AKI and 61 matched non-AKI inpatients were recruited after propensity score matching the age and hypertension. And 11 methylation-related metabolites in the plasma and urine of the two groups were quantified by using UHPLC-MS/MS method. RESULTS Certain methylation-relate intermediates were up-regulated in the plasma (choline, trimethylamine N-oxide (TMAO), trimethyl lysine (TML), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH)) and down-regulated in the urine of AKI inpatients (choline, betaine, TMAO, dimethylglycine (DMG), SAM and taurine). The correlation analysis revealed a relatively strong correlation between plasma SAH, SAM/SAH ratio and renal function index (serum creatinine (SCr) and estimated glomerular filtration rate (eGFR), r = 0.523-0.616), and the correlation of urinary intermediates with renal function index was weaker than that in the plasma. Furthermore, receiver operating characteristic (ROC) analysis showed that plasma SAH and urinary SAM/SAH ratio represented the best distinguishing efficiency with AUC 0.844 and 0.794, respectively. Moreover, the findings of binary regression analysis demonstrated plasma choline, TMAO, TML, SAM and SAH were the risk markers of AKI (up-regulation in plasma, OR > 1), urinary choline, betaine, TMAO, DMG and SAM were protective markers of AKI (down-regulation in urine, OR < 1), and SAM/SAH ratio was a protective marker in plasma and urine (down-regulation in both two biofluids, OR = 0.510, 0.383-0.678 in plasma, OR = 0.904, 0.854-0.968 in urine), indicating the increased risk of AKI when combined with the alteration of plasma and urinary levels. CONCLUSION The comprehensive analysis of plasma and urine samples from AKI inpatients offers a more extensive assessment of methylated metabolic alterations, suggesting a close relationship between AKI stress and altered methylation ability. The plasma level of SAH and SAM/SAH ratio and urinary SAM/SAH ratio both showed a strong correlation with renal function (SCr and eGFR) and good accuracy for distinguishing AKI in the two biomatrices, which exhibited promising prospects in predicting renal function decline and providing further information for the pathogenesis of AKI.
Collapse
Affiliation(s)
- Zhini Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province 211198, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China
| | - Xiaona Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China.
| | - Tiehua Wang
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Xiaoxiao Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China
| | - Yuanyuan Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China
| | - Zhiling Zhao
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China
| | - Ping Yang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China
| | - Congya Zhou
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China
| | - Qinggang Ge
- Department of Intensive Care Unit, Peking University Third Hospital, Beijing, China.
| | - Libo Zhao
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China; Therapeutic Drug Monitoring and Clinical Toxicology Center of Peking University, Beijing 100191, China; NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Beijing 100191, China.
| |
Collapse
|