1
|
Han R, Chu M, Gao J, Wang J, Wang M, Ma Y, Jia T, Zhang X. Compound heterozygous variants of THG1L result in autosomal recessive cerebellar ataxia. J Hum Genet 2023; 68:843-848. [PMID: 37670026 DOI: 10.1038/s10038-023-01192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/04/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
tRNA-histidine guanyltransferase 1-like protein (THG1L), located in the mitochondria, plays a crucial role in the tRNA maturation process. Dysfunction of THG1L results in abnormal mitochondrial tRNA modification and neurodevelopmental disorders. To date, few studies have focused on THG1L-related cerebellar ataxia. Whole-exome sequencing revealed compound heterozygous variants NM_017872.5: [c.224A > G]; [c.369-8T > G] in THG1L in a 6-year-old boy with moderate cerebellar ataxia. The variant c.224A > G was demonstrated to downregulate its RNA and protein expression, and c.369-8 T > G resulted in a 7 bp insertion before exon 3. Our case expanded the gene variation and clinical spectrum of THG1L-related cerebellar ataxia.
Collapse
Affiliation(s)
- Rui Han
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Manman Chu
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Jinshuang Gao
- Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Junling Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Mengyue Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Yichao Ma
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Tianming Jia
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Xiaoli Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Wang J, Huang LI, Li H, Chen G, Yang L, Wang D, Han H, Zheng G, Wang X, Liang J, He W, Fang F, Liao J, Sun D. Effects of ketogenic diet on the classification and functional composition of intestinal flora in children with mitochondrial epilepsy. Front Neurol 2023; 14:1237255. [PMID: 37588668 PMCID: PMC10426284 DOI: 10.3389/fneur.2023.1237255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023] Open
Abstract
The ketogenic diet (KD) has shown excellent performance in the treatment of refractory epilepsy, but how it works is not yet fully understood. Gut microbiota is associated with various neurological disorders through the brain-gut axis. Different dietary patterns have different effects on the composition and function of gut microbiota. Here, by analyzing fecal samples from some patients with mitochondrial epilepsy before and after KD treatment through 16SrRNA sequencing, we found that KD intervention reduced the abundance of Firmicutes in the patient's gut, while the abundance of Bacteroidota increased in the KD group. LefSe analysis showed that Actinobacteriota, Phascolarctobacterium had significant advantages in the control group, while Bacteroides increased significantly after KD intervention, especially Bacteroides fragilis. Functional analysis showed that there were significant differences in 12 pathways in level 3. These changes suggest that KD can change the composition and diversity of the gut microbiota in patients and affect their function. Changes in specific bacterial groups in the gut may serve as biomarkers for the therapeutic effects of KD on epilepsy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - LIjuan Huang
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hua Li
- Department of Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Guohong Chen
- Department of Neurology, Henan Provincial Children’s Hospital, Zhengzhou, China
| | - Liming Yang
- Department of Neurology, Hunan Provincial Children’s Hospital, Changsha, China
| | - Dong Wang
- Department of Neurology, Xi’an Children’s Hospital, Xi’an, China
| | - Hong Han
- Department of Neurology, Children’s Hospital of Shanxi, Taiyuan, China
| | - Guo Zheng
- Department of Neurology, Nanjing Children’s Hospital, Nanjing, China
| | - Xu Wang
- Department of Neurology, Changchun Children’s Hospital, Changchun, China
| | - Jianmin Liang
- Department of Neurology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Weijie He
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Fang Fang
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Dan Sun
- Department of Pediatric Neurology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Wang X, Yu X, Li Y, Liu F, Du L, Xie N, Wang C. ATF5 Attenuates Apoptosis in Hippocampal Neurons with Seizures Evoked by Mg 2+-Free Medium via Regulating Mitochondrial Unfolded Protein Response. Neurochem Res 2023; 48:62-71. [PMID: 35939173 DOI: 10.1007/s11064-022-03702-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/11/2023]
Abstract
The mitochondrial unfolded protein response (mtUPR)-a stress response pathway for maintaining protein homeostasis-is critical in seizures-induced neuronal injury. The activating transcription factor 5 (ATF5) regulates mtUPR; however, whether ATF5-regulated mtUPR has a role in neuronal injury in epilepsy remains uncertain. Here, we investigated the effects of ATF5-regulated mtUPR on neuronal injury in hippocampal neurons with seizures evoked by Mg2+-free medium. HSP60 and ClpP, key proteins of mtUPR, were upregulated, indicating mtUPR activation. ATF5 overexpression by lentiviral vector infection potentiated mtUPR, whereas ATF5 downregulation by lentiviral vector infection attenuated this response. Moreover, ATF5 overexpression elevated mitochondrial membrane potential and reduced reactive oxygen species (ROS) generation, suggesting that ATF5 overexpression protected mitochondrial homeostasis, while ATF5 downregulation had the opposite effect. ATF5 overexpression also reversed Bcl2 downregulation and Bax upregulation and attenuated seizures-induced neuronal apoptosis, while ATF5 downregulation aggravated the injury. Our study demonstrates that ATF5 attenuates seizures-induced neuronal injury, possibly by regulating mtUPR pathways, to prevent mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China
| | - Xiaomeng Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yujuan Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fengxia Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liyuan Du
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
USE OF KETOGENIC DIET THERAPY IN EPILEPSY WITH MITOCHONDRIAL DYSFUNCTION: A SYSTEMATIC AND CRITICAL REVIEW. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the development of molecular techniques over time more than %60 of epilepsy has associated with mitochondrial (mt) dysfunction. Ketogenic diet (KD) has been used in the treatment of epilepsy since the 1920s. Aim. To evaluate the evidence behind KD in mt dysfunction in epilepsy. Methods. Databases PubMed, Google Scholar and MEDLINE were searched in an umbrella approach to 12 March 2021 in English. To identify relevant studies specific search strategies were devised for the following topics: (1) mitochondrial dysfunction (2) epilepsy (3) KD treatment. Results. From 1794 papers, 36 articles were included in analysis: 16 (%44.44) preclinical studies, 11 (%30.55) case reports, 9 (%25) clinical studies. In all the preclinic studies, KD regulated the number of mt profiles, transcripts of metabolic enzymes and encoding mt proteins, protected the mice against to seizures and had an anticonvulsant mechanism. Case reports and clinical trials have reported patients with good results in seizure control and mt functions, although not all of them give good results as well as preclinical. Conclusion. Healthcare institutions, researchers, neurologists, health promotion organizations, and dietitians should consider these results to improve KD programs and disease outcomes for mt dysfunction in epilepsy.
Collapse
|
5
|
Differential effects of mTOR inhibition and dietary ketosis in a mouse model of subacute necrotizing encephalomyelopathy. Neurobiol Dis 2022; 163:105594. [PMID: 34933094 PMCID: PMC8770160 DOI: 10.1016/j.nbd.2021.105594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
Genetic mitochondrial diseases are the most frequent cause of inherited metabolic disorders and one of the most prevalent causes of heritable neurological disease. Leigh syndrome is the most common clinical presentation of pediatric mitochondrial disease, typically appearing in the first few years of life, and involving severe multisystem pathologies. Clinical care for Leigh syndrome patients is difficult, complicated by the wide range of symptoms including characteristic progressive CNS lesion, metabolic sequelae, and epileptic seizures, which can be intractable to standard management. While no proven therapies yet exist for the underlying mitochondrial disease, a ketogenic diet has led to some reports of success in managing mitochondrial epilepsies, with ketosis reducing seizure risk and severity. The impact of ketosis on other aspects of disease progression in Leigh syndrome has not been studied, however, and a rigorous study of the impact of ketosis on seizures in mitochondrial disease is lacking. Conversely, preclinical efforts have identified the intracellular nutrient signaling regulator mTOR as a promising therapeutic target, with data suggesting the benefits are mediated by metabolic changes. mTOR inhibition alleviates epilepsies arising from defects in TSC, an mTOR regulator, but the therapeutic potential of mTOR inhibition in seizures related to primary mitochondrial dysfunction is unknown. Given that ketogenic diet is used clinically in the setting of mitochondrial disease, and mTOR inhibition is in clinical trials for intractable pediatric epilepsies of diverse causal origins, a direct experimental assessment of their effects is imperative. Here, we define the impact of dietary ketosis on survival and CNS disease in the Ndufs4(KO) mouse model of Leigh syndrome and the therapeutic potential of both dietary ketosis and mTOR inhibition on seizures in this model. These data provide timely insight into two important clinical interventions.
Collapse
|
6
|
Abstract
AbstractThe ketogenic diet (KD) is a high-fat, low-carbohydrate diet, in which fat is used as the primary energy source through the production of ketone bodies (KBs) in place of glucose. The KD was formally introduced in 1921 to mimic the biochemical changes associated with fasting and gained recognition as a potent treatment for pediatric epilepsy in the mid-1990s. The clinical and basic scientific knowledge that supports the anti-seizure efficacy, safety, and feasibility of using the KD in patients with epilepsy is huge. Additionally, the International Ketogenic Diet Study Group’s consensus guidelines provide practical information in 2009 and 2018. The KD is a broad-spectrum therapy for drug resistant epilepsy and is gaining attention as a potential therapy for other neurological disorders. This article will review recent aspects on the use of the KD, including its mechanisms of action, KD alternatives, expanding its use across different age groups and regions, its use as a treatment for other neurologic disorders, and future research subjects.
Collapse
|
7
|
Zhang C, Yue W, Hou S, Cui W, Xiang L. Epilepsy and syphilis: A systematic review and meta-analysis. Indian J Dermatol Venereol Leprol 2021; 87:483-490. [PMID: 34219436 DOI: 10.25259/ijdvl_681_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/01/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Epileptic seizures were noted as one of the most overlooked manifestations in syphilis; therefore a few clinicians are concerned about the relationship between epilepsy and syphilis. Our study sought to clarify the prevalence and clinical features of epileptic seizures in patients with syphilis. METHODS We retrieved relevant articles from different databases, using the keywords "syphilis and epilepsy" and then performed statistical analysis to characterize the relationship between these diseases. RESULTS Forty one articles were included in this study: eight described the prevalence of syphilis and epilepsy and the remaining 33 were case reports on syphilis with epileptic seizures. The meta-analysis included 1252 patients with syphilis. The pooled estimate of proportion of prevalence (95% confidence interval) was 0.1384 (0.0955-0.2005), and the proportion and heterogeneity showed different degrees of change among three subgroups. The systematic review included 46 cases of syphilis with epileptic seizures. Thirty two (80%) patients had motor seizures, among whom 20 (62.5%) had tonic-clonic seizures. In addition, 30 (75%) patients had impaired awareness and 18 (45%) had status seizures. Twenty five (62.5%) patients were 35-55 years of age, and 77.5% of the included patients were men. Thirty seven (97.4%) patients were seizure-free after anti-syphilis treatment. LIMITATIONS Research in this field has been conducted for a relatively short period and publication bias may exist. Furthermore, some patients with syphilis and epileptic seizures may not have received a clear diagnosis. CONCLUSION The proportion of prevalence was 0.1384. Most of the included patients were 35-55 years of age and had impaired awareness and motor seizures. Many patients with syphilis and epileptic seizure showed full recovery or the development of minor neurological sequelae, and nearly all patients were seizure-free after timely anti-syphilis treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurology, Tianjin Huanhu Hospital, China
| | - Wei Yue
- Department of Neurology, Tianjin Huanhu Hospital, China
| | - Shuping Hou
- Department of Dermatovenereology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wanzhen Cui
- Department of Neurology, Tianjin Huanhu Hospital, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, China
| |
Collapse
|
8
|
Zhang K, Zhang H, Yi H, Huang G, Zhao X, Yu S, Xu W. The protective effects of 1,3-butanediol acetoacetate diester on decompression sickness in rats. J Appl Physiol (1985) 2021; 131:435-441. [PMID: 34166120 DOI: 10.1152/japplphysiol.00035.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inert gas bubbles are widely accepted as the causative factor of decompression sickness (DCS), resulting in gas embolism and systemic inflammatory responses. The anticonvulsive ketone ester 1,3-butanediol acetoacetate diester (BD-AcAc2) was reported to have the characteristics of increasing blood oxygen partial pressure (ppO2) and anti-inflammation and was thought to have the potential to reduce bubble formation and alleviate the pathological process of DCS. This study aims to investigate the potential protection of BD-AcAc2 against DCS in a rat model. A single dose of BD-AcAc2 was administered orally to adult male rats (5 g/kg body wt), followed by pharmacokinetic analysis or simulated air dives. After decompression, signs of DCS were monitored, and blood was sampled for biochemical measurements. Blood ketosis peaked at 2 h and lasted for more than 4 h. The incidence of DCS was decreased and postponed significantly in rats treated with BD-AcAc2 compared with those treated with saline (P < 0.05). Although BD-AcAc2 failed to reduce bubble load (P > 0.05), it showed an obvious decreasing trend. BD-AcAc2 significantly increased blood ppO2 and ameliorated oxidative and inflammatory responses, represented by increased plasma malondialdehyde (MDA), IL-1, IL-6, and TNF-α and decreased glutathione thiol (P < 0.05) levels, whereas blood pH remained unchanged (P > 0.05). These results suggest that BD-AcAc2 exerted beneficial effects on DCS rats mainly related to increasing ppO2 and anti-inflammatory and antioxidant properties. Together with its capacity for delaying central nervous system (CNS) oxygen toxicity seizures, BD-AcAc2 might be an ideal drug candidate for DCS prevention and treatment.NEW & NOTEWORTHY This is the first study exploring the effects of BD-AcAc2 on DCS prevention, and it was proven to be an efficient and simple method. The role of BD-AcAc2 in increasing ppO2, anti-inflammatory and antioxidant properties was thought to be the critical mechanism in DCS prevention.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Diving and Hyperbaric Medicine, Naval Special Medicine Center, Naval Medical University, Shanghai, China
| | - Haidong Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Hongjie Yi
- Department of Hyperbaric Oxygen, The First Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medicine Center, Naval Medical University, Shanghai, China
| | - Xupeng Zhao
- Department of Diving and Hyperbaric Medicine, Naval Special Medicine Center, Naval Medical University, Shanghai, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Weigang Xu
- Department of Diving and Hyperbaric Medicine, Naval Special Medicine Center, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Epilepsy in Mitochondrial Diseases-Current State of Knowledge on Aetiology and Treatment. CHILDREN-BASEL 2021; 8:children8070532. [PMID: 34206602 PMCID: PMC8303198 DOI: 10.3390/children8070532] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022]
Abstract
Mitochondrial diseases are a heterogeneous group of diseases resulting from energy deficit and reduced adenosine triphosphate (ATP) production due to impaired oxidative phosphorylation. The manifestation of mitochondrial disease is usually multi-organ. Epilepsy is one of the most common manifestations of diseases resulting from mitochondrial dysfunction, especially in children. The onset of epilepsy is associated with poor prognosis, while its treatment is very challenging, which further adversely affects the course of these disorders. Fortunately, our knowledge of mitochondrial diseases is still growing, which gives hope for patients to improve their condition in the future. The paper presents the pathophysiology, clinical picture and treatment options for epilepsy in patients with mitochondrial disease.
Collapse
|
10
|
Effects of Ketogenic Diet on Corneal Kindling Mouse Model. ACTA MEDICA BULGARICA 2020. [DOI: 10.2478/amb-2020-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Aim/objective: Corneal kindling mouse test is a model of decreasing the seizure threshold after repetitive subchronical electrical stimuli. Ketogenic diet (KD) is used for the treatment of children with pharmacoresistant epilepsy since more than 100 years. Surprisingly, very few studies testing the effect of the KD in corneal kindling test were published. The aim of this study was to evaluate the effect of the KD on the seizure activity in corneal kindling mouse model.
Methods: 50 adult male ICR mice (25-35 g) were randomly distributed in four groups, as follows: group 1 – standard diet (SD) treated controls (n = 10); group 2 – KD treated (n = 10), group 3 – kindled mice on SD treatment (n = 15); group 4 – kindled mice on KD treatment (n = 15). The diet was started at day one, one week before the start of the kindling and it continued for four weeks. At the end of the experiment, kindled mice were challenged with 6-Hz test and their behavior was assessed.
Results: In kindled mice on SD the seizure latency time significantly decreased at days 14, 21 and 28. Mice on KD displayed relatively constant seizure latency during the experiment. At day 28 the duration of provoked seizures was statistically higher as compared with mice on KD (median values 101 vs 2 sec, p < 0.05). Blood ketone levels were statistically higher (p < 0.05), and blood glucose level was statistically lower (p < 0.05) in the KD treated group, as compared with SD treated mice.
Conclusion: KD effectively suppressed the seizure activity in corneal kindling test. Further studies are needed for elucidating the molecular mechanisms which can explain this effect.
Collapse
|
11
|
|
12
|
Wells J, Swaminathan A, Paseka J, Hanson C. Efficacy and Safety of a Ketogenic Diet in Children and Adolescents with Refractory Epilepsy-A Review. Nutrients 2020; 12:nu12061809. [PMID: 32560503 PMCID: PMC7353240 DOI: 10.3390/nu12061809] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy in the pediatric and adolescent populations is a devastating condition where individuals are prone to recurrent epileptic seizures or changes in behavior or movement that is the direct result of a primary change in the electrical activity in the brain. Although many children with epilepsy will have seizures controlled with antiseizure medications (ASMs), a large percentage of patients are refractory to drug therapy and may consider initiating a ketogenic diet. The term Ketogenic Diet or Ketogenic Diet Therapy (KDT) refers to any diet therapy in which dietary composition results in a ketogenic state of human metabolism. Currently, there are 4 major Ketogenic diet therapies—the classic ketogenic diet (cKD), the modified Atkins diet (MAD), the medium chain triglyceride ketogenic diet (MCTKD) and the low glycemic index treatment (LGIT). The compositions of the 4 main KDTs differ and limited evidence to distinguish the efficacy among different diets currently exists. Although it is apparent that more randomized controlled trials (RCTs) and long-term studies are needed to evaluate efficacy, side effects and individual response to the diet, it is imperative to study and understand the metabolic profiles of patients with epilepsy in order to isolate which dietary restrictions are necessary to maximize clinical benefit.
Collapse
Affiliation(s)
- Jana Wells
- College of Allied Health Professions, University of Nebraska Medical Center, 984045 Nebraska Medical Center, Omaha, NE 68198-4045, USA;
- Correspondence:
| | - Arun Swaminathan
- Department of Neurological Sciences, University of Nebraska Medical Center, 988440 Nebraska Medical Center, Omaha, NE 68198-8440, USA;
| | - Jenna Paseka
- Department of Pharmaceutical and Nutrition Care, Nebraska Medicine 4350 Dewey Ave, Omaha, NE 68105, USA;
| | - Corrine Hanson
- College of Allied Health Professions, University of Nebraska Medical Center, 984045 Nebraska Medical Center, Omaha, NE 68198-4045, USA;
| |
Collapse
|
13
|
Aberrant Mitochondrial Morphology and Function in the BTBR Mouse Model of Autism Is Improved by Two Weeks of Ketogenic Diet. Int J Mol Sci 2020; 21:ijms21093266. [PMID: 32380723 PMCID: PMC7246481 DOI: 10.3390/ijms21093266] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that exhibits a common set of behavioral and cognitive impairments. Although the etiology of ASD remains unclear, mitochondrial dysfunction has recently emerged as a possible causative factor underlying ASD. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that augments mitochondrial function, and has been shown to reduce autistic behaviors in both humans and in rodent models of ASD. The aim of the current study was to examine mitochondrial bioenergetics in the BTBR mouse model of ASD and to determine whether the KD improves mitochondrial function. We also investigated changes in mitochondrial morphology, which can directly influence mitochondrial function. We found that BTBR mice had altered mitochondrial function and exhibited smaller more fragmented mitochondria compared to C57BL/6J controls, and that supplementation with the KD improved both mitochondrial function and morphology. We also identified activating phosphorylation of two fission proteins, pDRP1S616 and pMFFS146, in BTBR mice, consistent with the increased mitochondrial fragmentation that we observed. Intriguingly, we found that the KD decreased pDRP1S616 levels in BTBR mice, likely contributing to the restoration of mitochondrial morphology. Overall, these data suggest that impaired mitochondrial bioenergetics and mitochondrial fragmentation may contribute to the etiology of ASD and that these alterations can be reversed with KD treatment.
Collapse
|
14
|
Morris G, Puri BK, Carvalho A, Maes M, Berk M, Ruusunen A, Olive L. Induced Ketosis as a Treatment for Neuroprogressive Disorders: Food for Thought? Int J Neuropsychopharmacol 2020; 23:366-384. [PMID: 32034911 PMCID: PMC7311648 DOI: 10.1093/ijnp/pyaa008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/05/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Induced ketosis (or ketone body ingestion) can ameliorate several changes associated with neuroprogressive disorders, including schizophrenia, bipolar disorder, and major depressive disorder. Thus, the effects of glucose hypometabolism can be bypassed through the entry of beta-hydroxybutyrate, providing an alternative source of energy to glucose. The weight of evidence suggests that induced ketosis reduces levels of oxidative stress, mitochondrial dysfunction, and inflammation-core features of the above disorders. There are also data to suggest that induced ketosis may be able to target other molecules and signaling pathways whose levels and/or activity are also known to be abnormal in at least some patients suffering from these illnesses such as peroxisome proliferator-activated receptors, increased activity of the Kelch-like ECH-associated protein/nuclear factor erythroid 2-related factor 2, Sirtuin-1 nuclear factor-κB p65, and nicotinamide adenine dinucleotide (NAD). This review explains the mechanisms by which induced ketosis might reduce mitochondrial dysfunction, inflammation, and oxidative stress in neuropsychiatric disorders and ameliorate abnormal levels of molecules and signaling pathways that also appear to contribute to the pathophysiology of these illnesses. This review also examines safety data relating to induced ketosis over the long term and discusses the design of future studies.
Collapse
Affiliation(s)
- Gerwyn Morris
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Basant K Puri
- C.A.R., Cambridge, United Kingdom,Hammersmith Hospital, London, United Kingdom
| | - Andre Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Maes
- Department of Psychiatry and Medical Psychology, Medical Faculty, Medical University of Plovdiv, Plovdiv, Bulgaria,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry, and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Australia,Correspondence: Michael Berk, PO Box 281 Geelong, Victoria 3220 Australia ()
| | - Anu Ruusunen
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| | - Lisa Olive
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Australia
| |
Collapse
|
15
|
Na JH, Kim HD, Lee YM. Effective and safe diet therapies for Lennox-Gastaut syndrome with mitochondrial dysfunction. Ther Adv Neurol Disord 2020; 13:1756286419897813. [PMID: 32082420 PMCID: PMC7005978 DOI: 10.1177/1756286419897813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Lennox-Gastaut syndrome (LGS) is a typical intractable form of epilepsy that most often occurs between the second and sixth year of life. This study aimed to evaluate the clinical efficacy and safety of ketogenic diet therapies (DTs) for LGS with mitochondrial dysfunction. Methods: This was a retrospective study involving 20 LGS patients with mitochondrial dysfunction who received several DTs from 2004 to 2014 at a single tertiary care center. Seizure reduction rate, cognitive function, retention rate, electroencephalography (EEG) changes, and adverse effects were examined before and after DTs. Results: The retention rates at 1 and 2 years after initiation of DTs were 45% and 40%, respectively. After 1-year follow up, we observed seizure freedom in two patients, 75% seizure reduction in two patients, 50% reduction in three patients, and 25% reduction in one patient. After 2-year follow up, the outcomes were seizure freedom in two patients, 90% seizure reduction in one patient, 75% reduction in two patients, and 50% reduction in two patients. EEG findings improved in nine patients. Nine patients were treated with DTs for 1 year; all patients demonstrated improved cognitive status. Eight patients were treated with DTs for 2 years, of whom seven had improved cognitive status. Poor tolerability of DTs was due to poor oral intake and gastrointestinal problems. Conclusions: We demonstrate that, in LGS with mitochondrial dysfunction, improvement of seizures and cognitive function are not inferior to those in other patients treated with DTs. This study showed that DTs are efficacious and feasible for LGS patients with mitochondrial dysfunction and can significantly improve their prognosis.
Collapse
Affiliation(s)
- Ji-Hoon Na
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Heung-Dong Kim
- Departments of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Mock Lee
- Department of Pediatrics, Yonsei University College of Medicine, Gangnam Severance Hospital, 211 Eonju-ro, Gangnam-gu, Seoul, 135-720, Korea
| |
Collapse
|
16
|
Versele R, Corsi M, Fuso A, Sevin E, Businaro R, Gosselet F, Fenart L, Candela P. Ketone Bodies Promote Amyloid-β 1-40 Clearance in a Human in Vitro Blood-Brain Barrier Model. Int J Mol Sci 2020; 21:E934. [PMID: 32023814 PMCID: PMC7037612 DOI: 10.3390/ijms21030934] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the abnormal accumulation of amyloid-β (Aβ) peptides in the brain. The pathological process has not yet been clarified, although dysfunctional transport of Aβ across the blood-brain barrier (BBB) appears to be integral to disease development. At present, no effective therapeutic treatment against AD exists, and the adoption of a ketogenic diet (KD) or ketone body (KB) supplements have been investigated as potential new therapeutic approaches. Despite experimental evidence supporting the hypothesis that KBs reduce the Aβ load in the AD brain, little information is available about the effect of KBs on BBB and their effect on Aβ transport. Therefore, we used a human in vitro BBB model, brain-like endothelial cells (BLECs), to investigate the effect of KBs on the BBB and on Aβ transport. Our results show that KBs do not modify BBB integrity and do not cause toxicity to BLECs. Furthermore, the presence of KBs in the culture media was combined with higher MCT1 and GLUT1 protein levels in BLECs. In addition, KBs significantly enhanced the protein levels of LRP1, P-gp, and PICALM, described to be involved in Aβ clearance. Finally, the combined use of KBs promotes Aβ efflux across the BBB. Inhibition experiments demonstrated the involvement of LRP1 and P-gp in the efflux. This work provides evidence that KBs promote Aβ clearance from the brain to blood in addition to exciting perspectives for studying the use of KBs in therapeutic approaches.
Collapse
Affiliation(s)
- Romain Versele
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Mariangela Corsi
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Dip. di Chirurgia “P. Valdoni”, Via A. Scarpa 16, 00161 Rome, Italy;
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Laurence Fenart
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| | - Pietra Candela
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), UR 2465, Université d'Artois, F-62300 Lens, France; (R.V.); (M.C.); (E.S.); (F.G.); (L.F.)
| |
Collapse
|
17
|
Orsucci D, Ienco EC, Siciliano G, Mancuso M. Mitochondrial disorders and drugs: what every physician should know. Drugs Context 2019; 8:212588. [PMID: 31391854 PMCID: PMC6668504 DOI: 10.7573/dic.212588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial disorders are a group of metabolic conditions caused by impairment of the oxidative phosphorylation system. There is currently no clear evidence supporting any pharmacological interventions for most mitochondrial disorders, except for coenzyme Q10 deficiencies, Leber hereditary optic neuropathy, and mitochondrial neurogastrointestinal encephalomyopathy. Furthermore, some drugs may potentially have detrimental effects on mitochondrial dysfunction. Drugs known to be toxic for mitochondrial functions should be avoided whenever possible. Mitochondrial patients needing one of these treatments should be carefully monitored, clinically and by laboratory exams, including creatine kinase and lactate. In the era of molecular and ‘personalized’ medicine, many different physicians (not only neurologists) should be aware of the basic principles of mitochondrial medicine and its therapeutic implications. Multicenter collaboration is essential for the advancement of therapy for mitochondrial disorders. Whenever possible, randomized clinical trials are necessary to establish efficacy and safety of drugs. In this review we discuss in an accessible way the therapeutic approaches and perspectives in mitochondrial disorders. We will also provide an overview of the drugs that should be used with caution in these patients.
Collapse
|
18
|
Riantarini I, Kim HD, Ko A, Kim SH, Kang HC, Lee JS, Jung DE. Short- and long-term seizure-free outcomes of dietary treatment in infants according to etiology. Seizure 2019; 71:100-104. [PMID: 31252281 DOI: 10.1016/j.seizure.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022] Open
Abstract
PURPOSE It is important to determine whether specific etiology is more effective to dietary treatment so that the diet can be started earlier for infants. We evaluated etiology-specific, seizure-free outcomes of dietary treatment in infants <1 year of age. METHODS We conducted a 10-year, retrospective, longitudinal observational study of 115 infants treated with ketogenic diet (KD) or modified Atkins diet (MAD). RESULTS Most patients (70%) received classical KD; 30% received MAD. During follow-up, 90%, 73%, and 61% of the patients remained on the diet at 3, 6, and 12 months, respectively. Seizure-free outcomes were reported in 50%, 44%, and 50% of the patients at 3, 6, and 12 months, respectively. Long-term seizure-free outcomes over 12 months were reported in 43 (74%) of 58 infants who were seizure-free at 3 months. Etiologies were mostly symptomatic (structural brain abnormalities, genetic, or metabolic) in 83 (72%) of 115 patients. According to underlying etiology, long-term seizure-free outcomes were observed in 14 (33%) of 42 patients with structural brain abnormalities, 7 (33%) of 21 with genetic etiologies, 7 (35%) of 20 with metabolic etiologies, and 15 (47%) of 32 with unknown etiologies. There were no etiology-based differences with respect to long-term seizure-free outcomes (P = 0.63). CONCLUSION The high rate of long-term seizure-free outcomes can be predicted based on the seizure freedom at 3 months regardless of etiology. Early dietary treatment is beneficial, even in infants <1 year of age with specific symptomatic etiologies such as genetic, structural brain abnormalities, and metabolic etiology.
Collapse
Affiliation(s)
| | - Heung Dong Kim
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Ara Ko
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Hee Kim
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Soo Lee
- Division of Pediatric Neurology, Epilepsy Research Institute, Severance Children's Hospital, Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Eun Jung
- Department of Pediatrics, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
19
|
Finsterer J, Zarrouk-Mahjoub S. Survival and outcome in MELAS not only depends on onset and disease duration. J Neurol Sci 2019; 397:9-10. [DOI: 10.1016/j.jns.2018.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
|
20
|
Finsterer J. Antiepileptics and NO-precursors may be beneficial for stroke-like episodes. eNeurologicalSci 2019; 14:38-39. [PMID: 30619949 PMCID: PMC6304340 DOI: 10.1016/j.ensci.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/16/2018] [Indexed: 11/25/2022] Open
Abstract
Pathogenesis and management of stroke-like episodes in mitochondrial disorders is under debate and no consensus has been reached thus far how this phenomenon should be managed. Frequently applied are nitric oxide (NO) precursors but a well-designed study confirming the effectiveness of such an approach is lacking. Administration of antiepileptic drugs can be meaningful if there is paroxysmal activity on EEG or if a patient presents with seizures. The case reported by Sakai et al. suggests that administration of antiepileptic drugs for a stroke-like episode may be beneficial even in the absence of seizures or paroxysmal EEG activity.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180 Vienna, Austria
| |
Collapse
|
21
|
Ryan CS, Fine AL, Cohen AL, Schiltz BM, Renaud DL, Wirrell EC, Patterson MC, Boczek NJ, Liu R, Babovic-Vuksanovic D, Chan DC, Payne ET. De Novo DNM1L Variant in a Teenager With Progressive Paroxysmal Dystonia and Lethal Super-refractory Myoclonic Status Epilepticus. J Child Neurol 2018; 33:651-658. [PMID: 29877124 PMCID: PMC8176639 DOI: 10.1177/0883073818778203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND The dynamin 1-like gene ( DNM1L) encodes a GTPase that mediates mitochondrial and peroxisomal fission and fusion. We report a new clinical presentation associated with a DNM1L pathogenic variant and review the literature. RESULTS A 13-year-old boy with mild developmental delays and paroxysmal dystonia presented acutely with multifocal myoclonic super-refractory status epilepticus. Despite sustained and aggressive treatment, seizures persisted and care was ultimately withdrawn in the context of extensive global cortical atrophy. Rapid trio-whole exome sequencing revealed a de novo heterozygous c.1207C>T (p.R403C) pathogenic variant in DNM1L. Immunofluorescence staining of fibroblast mitochondria revealed abnormally elongated and tubular morphology. CONCLUSIONS This case highlights the diagnostic importance of rapid whole exome sequencing within a critical care setting and reveals the expanding phenotypic spectrum associated with DNM1L variants. This now includes progressive paroxysmal dystonia and adolescent-onset super-refractory myoclonic status epilepticus contributing to strikingly rapid and progressive cortical atrophy and death.
Collapse
Affiliation(s)
- Conor S Ryan
- 1 Department of Neurology, Division of Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anthony L Fine
- 1 Department of Neurology, Division of Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USA
| | - Alexander L Cohen
- 1 Department of Neurology, Division of Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USA
| | - Brenda M Schiltz
- 2 Department of Pediatrics, Division of Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Deborah L Renaud
- 1 Department of Neurology, Division of Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USA
| | - Elaine C Wirrell
- 1 Department of Neurology, Division of Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USA
| | - Marc C Patterson
- 1 Department of Neurology, Division of Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USA.,3 Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Nicole J Boczek
- 4 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.,5 Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Raymond Liu
- 6 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - David C Chan
- 6 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Eric T Payne
- 1 Department of Neurology, Division of Child and Adolescent Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
22
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
23
|
Finsterer J, Zarrouk-Mahjoub S. Treating mitochondrial disorders requires full exploitation of available therapeutic options. Mol Genet Metab Rep 2017; 13:97-98. [PMID: 29062713 PMCID: PMC5645304 DOI: 10.1016/j.ymgmr.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunisia
| |
Collapse
|
24
|
Theunissen TEJ, Gerards M, Hellebrekers DMEI, van Tienen FH, Kamps R, Sallevelt SCEH, Hartog ENMMD, Scholte HR, Verdijk RM, Schoonderwoerd K, de Coo IFM, Szklarczyk R, Smeets HJM. Selection and Characterization of Palmitic Acid Responsive Patients with an OXPHOS Complex I Defect. Front Mol Neurosci 2017; 10:336. [PMID: 29093663 PMCID: PMC5651253 DOI: 10.3389/fnmol.2017.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial disorders are genetically and clinically heterogeneous, mainly affecting high energy-demanding organs due to impaired oxidative phosphorylation (OXPHOS). Currently, effective treatments for OXPHOS defects, with complex I deficiency being the most prevalent, are not available. Yet, clinical practice has shown that some complex I deficient patients benefit from a high-fat or ketogenic diet, but it is unclear how these therapeutic diets influence mitochondrial function and more importantly, which complex I patients could benefit from such treatment. Dietary studies in a complex I deficient patient with exercise intolerance showed increased muscle endurance on a high-fat diet compared to a high-carbohydrate diet. We performed whole-exome sequencing to characterize the genetic defect. A pathogenic homozygous p.G212V missense mutation was identified in the TMEM126B gene, encoding an early assembly factor of complex I. A complementation study in fibroblasts confirmed that the p.G212V mutation caused the complex I deficiency. The mechanism turned out to be an incomplete assembly of the peripheral arm of complex I, leading to a decrease in the amount of mature complex I. The patient clinically improved on a high-fat diet, which was supported by the 25% increase in maximal OXPHOS capacity in TMEM126B defective fibroblast by the saturated fatty acid palmitic acid, whereas oleic acid did not have any effect in those fibroblasts. Fibroblasts of other patients with a characterized complex I gene defect were tested in the same way. Patient fibroblasts with complex I defects in NDUFS7 and NDUFAF5 responded to palmitic acid, whereas ACAD9, NDUFA12, and NDUFV2 defects were non-responding. Although the data are too limited to draw a definite conclusion on the mechanism, there is a tendency that protein defects involved in early assembly complexes, improve with palmitic acid, whereas proteins defects involved in late assembly, do not. Our data show at a clinical and biochemical level that a high fat diet can be beneficial for complex I patients and that our cell line assay will be an easy tool for the selection of patients, who might potentially benefit from this therapeutic diet.
Collapse
Affiliation(s)
- Tom E J Theunissen
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mike Gerards
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands
| | | | - Florence H van Tienen
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Rick Kamps
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Suzanne C E H Sallevelt
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Hans R Scholte
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Kees Schoonderwoerd
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Radek Szklarczyk
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
25
|
Kovac S, Dinkova Kostova AT, Herrmann AM, Melzer N, Meuth SG, Gorji A. Metabolic and Homeostatic Changes in Seizures and Acquired Epilepsy-Mitochondria, Calcium Dynamics and Reactive Oxygen Species. Int J Mol Sci 2017; 18:E1935. [PMID: 28885567 PMCID: PMC5618584 DOI: 10.3390/ijms18091935] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Acquired epilepsies can arise as a consequence of brain injury and result in unprovoked seizures that emerge after a latent period of epileptogenesis. These epilepsies pose a major challenge to clinicians as they are present in the majority of patients seen in a common outpatient epilepsy clinic and are prone to pharmacoresistance, highlighting an unmet need for new treatment strategies. Metabolic and homeostatic changes are closely linked to seizures and epilepsy, although, surprisingly, no potential treatment targets to date have been translated into clinical practice. We summarize here the current knowledge about metabolic and homeostatic changes in seizures and acquired epilepsy, maintaining a particular focus on mitochondria, calcium dynamics, reactive oxygen species and key regulators of cellular metabolism such as the Nrf2 pathway. Finally, we highlight research gaps that will need to be addressed in the future which may help to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stjepana Kovac
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Albena T Dinkova Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | - Nico Melzer
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Sven G Meuth
- Department of Neurology, University of Münster, 48149 Münster, Germany.
| | - Ali Gorji
- Department of Neurology, University of Münster, 48149 Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996836111, Iran.
- Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Department of Neurosurgery, University of Münster, 48149 Münster, Germany.
- Epilepsy Research Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|