1
|
Kim MJ, Song YJ, Kwon TG, Lee JH, Chun SY, Oh SH. Platelet-Rich Plasma-Embedded Porous Polycaprolactone Film with a Large Surface Area for Effective Hemostasis. Tissue Eng Regen Med 2024; 21:995-1005. [PMID: 38896385 PMCID: PMC11416449 DOI: 10.1007/s13770-024-00656-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Uncontrollable and widespread bleeding caused by surgery or sudden accidents can lead to death if not treated with appropriate hemostasis. To prevent excessive life-threatening bleeding, various hemostatic agents based on polymeric biomaterials with various additives for accelerated blood coagulation have been adopted in clinical fields. In particular, platelet-rich plasma (PRP), which contains many blood coagulation factors that can accelerate blood clot formation, is considered as one of the most effective hemostatic additives. METHODS We investigated a PRP-embedded porous film using discarded (expired) PRP and a film with a leaf-stacked structure (FLSS), as a hemostatic agent to induce rapid hemostasis. The film, which contained an LSS on one side (PCL-FLSS), was fabricated by a simple heating-cooling technique using tetraglycol and polycaprolactone (PCL) film. Activated PRP was obtained by the thawing of frozen PRP at the end of its expiration date (the platelet cell membrane is disrupted during the freezing and thawing of PRP, thus releasing various coagulation factors) and embedded in the PCL-FLSS (PRP-FLSS). RESULTS From in vitro and in vivo experiments using a rat hepatic bleeding model, it was recognized that PRP-FLSS is not only biocompatible but also significantly accelerates blood clotting and thus prevents rapid bleeding, probably due to a synergistic effect of the sufficient supply of various blood coagulants from activated PRP embedded in the LSS layer and the large surface area of the LSS itself. CONCLUSION The study suggests that PRP-FLSS, a combination of a porous polymer matrix with a unique morphology and discarded biofunctional resources, can be an advanced hemostatic agent as well as an upcycling platform to avoid the waste of biofunctional resources.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ye Jin Song
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Chilgok Kyungpook National University Hospital, Kyungpook National University, Daegu, 41404, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon, 34054, Republic of Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41404, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Han Y, Su X, Cao J, Liu J, Zhang W. Application of autologous platelet-rich gel formed by calcium gluconate combined with hormone therapy for endometrial repair after hysteroscopic transcervical resection of adhesion surgery and successful pregnancy: case report and literature review. Front Med (Lausanne) 2024; 11:1436089. [PMID: 39359911 PMCID: PMC11445619 DOI: 10.3389/fmed.2024.1436089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Intrauterine adhesion (IUA), a common gynecological disease, is mainly caused by traumatic or infectious factors that lead to basal endometrial layer physiological repair disorders. IUA is mostly treated via hysteroscopic transcervical resection of adhesion and although it can restore uterine cavity shape, its endometrial repair effectiveness is limited. The figures showed that after surgery, patients with IUA have a high recurrence rate. Therefore, quick endometrial damage repair is key to successful treatment. Case presentation A 34-year-old patient visited our hospital after experiencing amenorrhea for 4 months following an induced abortion and had a fertility requirement. Based on the American Fertility Society intrauterine scores, the patient was diagnosed with moderate IUA. She underwent transcervical resection of adhesion, followed by autologous platelet-rich gel intrauterine perfusion and periodic estrogen-progesterone treatment for three menstrual cycles. No complications developed during treatment and the patient's endometrium was significantly repaired, with successful pregnancy being achieved. Conclusion Autologous platelet-rich gel promoted endometrial repair and acted as a mechanical barrier to prevent intrauterine adhesion. This approach May offer new insights into IUA treatment.
Collapse
Affiliation(s)
- Yunying Li
- Department of Gynecology and Obstetrics, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yingxue Han
- Department of Gynecology and Obstetrics, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Xiaojuan Su
- Department of Gynecology and Obstetrics, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Junjuan Cao
- Transfusion Department, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Junxia Liu
- Department of Gynecology and Obstetrics, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Wenjuan Zhang
- Department of Gynecology and Obstetrics, Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
3
|
Xu N, Li L, Zou J, Yue W, Wang P, Chai M, Li L, Zhang L, Li X, Cheng Y, Wang Z, Wang X, Wang R, Xiang J, Linghu E, Chai N. PRP improves the outcomes of autologous skin graft transplantation on the esophagus by promoting angiogenesis and inhibiting fibrosis and inflammation. J Transl Int Med 2024; 12:384-394. [PMID: 39360159 PMCID: PMC11444473 DOI: 10.2478/jtim-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Background and Objectives Autologous skin graft (ASG) transplantation is a challenging approach but a promising option for patients to prevent postoperative esophageal stricture. Nonetheless, the current strategies require improvement. We aimed to investigate the effectiveness of the injection of platelet-rich plasma (PRP) before skin graft transplantation for extensive esophageal defects after endoscopic resection. Methods Standardized complete circular endoscopic resection (5 cm in length) was performed in 27 pigs allocated into 3 groups. The artificial ulcers were treated with a fully covered esophageal stent (control group), ASG (ASG group), and submucosal injection of PRP with ASG (PRP-ASG group). Macroscopic evaluation and histological analysis of the remolded esophagus were performed 7, 14, and 28 days after surgery. Results The macroscopic evaluation indicated that submucosal injection of PRP before transplantation effectively promoted the survival rate of skin grafts and decreased the rate of mucosal contraction compared with those treated with ASG or stent alone. Histological analysis of submucosal tissue showed that this modified strategy significantly promoted wound healing of reconstructed tissues by enhancing angiogenesis, facilitating collagen deposition, and decreasing inflammation and fibrogenesis. Conclusions These findings suggested that PRP might be used as a biological supplement to increase the esophageal skin graft survival rate and improve submucosal tissue remolding in a clinically relevant porcine model. With extremely low mucosal contraction, this novel combination strategy showed the potential to effectively prevent stenosis in extensive esophageal ulcers.
Collapse
Affiliation(s)
- Ning Xu
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Longsong Li
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Jiale Zou
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Wenyi Yue
- Department of Radiology, Chinese PLA General Medical School, Beijing100853, Beijing, China
| | - Pengju Wang
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Mi Chai
- Department of Plastic Surgery, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Li Li
- Department of Plastic Surgery, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Lihua Zhang
- Department of Pathology, The Fourth Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Xiao Li
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Yaxuan Cheng
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Zixin Wang
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Xueting Wang
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Runzi Wang
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Jingyuan Xiang
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Enqiang Linghu
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| | - Ningli Chai
- Senior Department of Gastroenterology, The First Medical Center of PLA General Hospital, Beijing100853, Beijing, China
| |
Collapse
|
4
|
Fukui M, Lai F, Hihara M, Mitsui T, Matsuoka Y, Sun Z, Kunieda S, Taketani S, Odaka T, Okuma K, Kakudo N. Activation of cell adhesion and migration is an early event of platelet-rich plasma (PRP)-dependent stimulation of human adipose-derived stem/stromal cells. Hum Cell 2024; 37:181-192. [PMID: 37787969 DOI: 10.1007/s13577-023-00989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023]
Abstract
Stem cell therapy is a promising treatment in regenerative medicine. Human adipose-derived stem/stromal cells (hASCs), a type of mesenchymal stem cell, are easy to harvest. In plastic and aesthetic surgery, hASC may be applied in the treatment of fat grafting, wound healing, and scar remodeling. Platelet-rich plasma (PRP) contains various growth factors, including platelet-derived growth factor (PDGF), which accelerates wound healing. We previously reported that PRP promotes the proliferation of hASC via multiple signaling pathways, and we evaluated the effect of PRP on the stimulation of hASC adhesion and migration, leading to the proliferation of these cells. When hASCs were treated with PRP, AKT, ERK1/2, paxillin and RhoA were rapidly activated. PRP treatment led to the formation of F-actin stress fibers. Strong signals for integrin β1, paxillin and RhoA at the cell periphery of RPR-treated cells indicated focal adhesion. PRP promoted cell adhesion and movement of hASC, compared with the control group. Imatinib, an inhibitor of the PDGF receptor tyrosine kinase, inhibited the promotion of PRP-dependent cell migration. PDGF treatment of hASCs also stimulated cell adhesion and migration but to a lesser extent than PRP treatment. PRP promoted the adhesion and the migration of hASC, mediated by the activation of AKT in the integrin signaling pathway. PRP treatment was more effective than PDGF treatment in enhancing cell migration. Thus, the ability of PRPs to promote migration of hASC to enhance cell growth is evident.
Collapse
Affiliation(s)
- Michika Fukui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan.
| | - Fangyuan Lai
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Masakatsu Hihara
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Toshihito Mitsui
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Yuki Matsuoka
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Zhongxin Sun
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Sakurako Kunieda
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Shigeru Taketani
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| | - Tokifumi Odaka
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Kazu Okuma
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 2-5-1, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
5
|
Yuan L, Huang W, Bi Y, Chen S, Wang X, Li T, Wei P, Du J, Zhao L, Liu B, Yang Y. G-CSF-mobilized peripheral blood mononuclear cells combined with platelet-rich plasma restored the ovarian function of aged rats. J Reprod Immunol 2023; 158:103953. [PMID: 37209460 DOI: 10.1016/j.jri.2023.103953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Regenerative medicine with peripheral blood mononuclear cell (PBMC) transplantation sheds light on the issue of premature ovarian insufficiency (POI). However, the efficiency of PBMC treatment in natural ovarian aging (NOA) remains unclear. METHODS Thirteen-month-old female Sprague-Dawley (SD) rats were used to verify the NOA model. Seventy-two NOA rats were randomly divided into three groups: the NOA control group, PBMC group, and PBMC+platelet-rich plasma (PRP) group. PBMCs and PRP were transplanted by intraovarian injection. The effects on ovarian function and fertility were measured after transplantation. RESULTS Transplantation of PBMCs could restore the normal estrous cycle, consistent with the recovery of serum sex hormone levels, increased follicle numbers at all stages, and restoration of fertility by facilitating pregnancy and live birth. Moreover, when combined with PRP injection, these effects were more significant. The male-specific SRY gene was detected in the ovary at all four time points, suggesting that PBMCs continuously survived and functioned in NOA rats. In addition, after PBMC treatment, the expression of angiogenesis-related and glycolysis-related markers in the ovaries was upregulated, which indicated that these effects were associated with angiogenesis and glycolysis. CONCLUSIONS PBMC transplantation restores the ovarian functions and fertility of NOA rats, and PRP could enhance the efficiency. Increased ovarian vascularization, follicle production, and glycolysis are likely the major mechanisms.
Collapse
Affiliation(s)
- Lifang Yuan
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Weiyu Huang
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yin Bi
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Saiqiong Chen
- Department of Obstetrics and Gynecology, the Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Xi Wang
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Ting Li
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Peiru Wei
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiebing Du
- Guangxi Maternal and Child Healthcare Hospital, Nanning, Guangxi 530002, China
| | - Ling Zhao
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Bo Liu
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Yihua Yang
- Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
6
|
Iacopetti I, Perazzi A, Patruno M, Contiero B, Carolo A, Martinello T, Melotti L. Assessment of the quality of the healing process in experimentally induced skin lesions treated with autologous platelet concentrate associated or unassociated with allogeneic mesenchymal stem cells: preliminary results in a large animal model. Front Vet Sci 2023; 10:1219833. [PMID: 37559892 PMCID: PMC10407250 DOI: 10.3389/fvets.2023.1219833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/13/2023] [Indexed: 08/11/2023] Open
Abstract
Regenerative medicine for the treatment of skin lesions is an innovative and rapidly developing field that aims to promote wound healing and restore the skin to its original condition before injury. Over the years, different topical treatments have been evaluated to improve skin wound healing and, among them, mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) have shown promising results for this purpose. This study sought to evaluate the quality of the healing process in experimentally induced full-thickness skin lesions treated with PRP associated or unassociated with MSCs in a sheep second intention wound healing model. After having surgically created full-thickness wounds on the back of three sheep, the wound healing process was assessed by performing clinical evaluations, histopathological examinations, and molecular analysis. Treated wounds showed a reduction of inflammation and contraction along with an increased re-epithelialization rate and better maturation of the granulation tissue compared to untreated lesions. In particular, the combined treatment regulated the expression of collagen types I and III resulting in a proper resolution of the granulation tissue contrary to what was observed in untreated wounds; moreover, it led to a better maturation and organization of skin adnexa and collagen fibers in the repaired skin compared to untreated and PRP-treated wounds. Overall, both treatments improved the wound healing process compared to untreated wounds. Wounds treated with PRP and MSCs showed a healing progression that qualitatively resembles a restitutio ad integrum of the repaired skin, showing features typical of a mature healthy dermis.
Collapse
Affiliation(s)
- Ilaria Iacopetti
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
| | - Anna Perazzi
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | - Barbara Contiero
- Department of Animal Medicine, Production and Health, University of Padua, Padova, Italy
| | - Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| | | | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padova, Italy
| |
Collapse
|
7
|
Wang JH, Gao ZH, Qian HL, Li JS, Ji HM, Da MX. Treatment of pyogenic liver abscess by surgical incision and drainage combined with platelet-rich plasma: A case report. World J Clin Cases 2022; 10:7082-7089. [PMID: 36051112 PMCID: PMC9297389 DOI: 10.12998/wjcc.v10.i20.7082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/10/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pyogenic liver abscesses are insidious in the early stage. Some cases progress rapidly, and the patient’s condition can worsen and even become life-threatening if timely treatment is not provided. Surgery and prolonged antibiotic treatment are often required if the abscess is large and liquefied and becomes separated within the lumen.
CASE SUMMARY We report a case of bacterial liver abscess with a poor outcome following pharmacological treatment, review the literature related to the use of platelet-rich plasma (PRP) in the treatment of hepatic impairment and partial hepatectomy in animals, and discuss the prognostic features of surgical incision and drainage combined with PRP in the treatment of bacterial liver abscesses. This is the first case describing the use of PRP in the treatment of a bacterial liver abscess in humans, providing new ideas for the treatment of this condition.
CONCLUSION This case highlights the importance of surgical treatment for bacterial liver abscesses that are well liquefied and poorly managed medically. PRP may produce antimicrobial effects and promote the regeneration and repair of liver tissue.
Collapse
Affiliation(s)
- Jun-Hong Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of Hepatobiliary Surgery, The First People’s Hospital of Baiyin, Baiyin 730900, Gansu Province, China
| | - Zhen-Hua Gao
- Department of Hepatobiliary Surgery, The First People’s Hospital of Baiyin, Baiyin 730900, Gansu Province, China
| | - Hong-Liang Qian
- Department of Hepatobiliary Surgery, The First People’s Hospital of Baiyin, Baiyin 730900, Gansu Province, China
| | - Jin-Shun Li
- Department of Hepatobiliary Surgery, The First People’s Hospital of Baiyin, Baiyin 730900, Gansu Province, China
| | - Hao-Min Ji
- Department of Hepatobiliary Surgery, The First People’s Hospital of Baiyin, Baiyin 730900, Gansu Province, China
| | - Ming-Xu Da
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of General Surgery, People’s Hospital of Gansu Province, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
8
|
Ma J, Zhan H, Li W, Zhang L, Yun F, Wu R, Lin J, Li Y. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion. Biomater Res 2021; 25:40. [PMID: 34819167 PMCID: PMC8611984 DOI: 10.1186/s40824-021-00242-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022] Open
Abstract
Intrauterine adhesion (IUA) is a common gynaecological disease that develops from infection or trauma. IUA disease may seriously affect the physical and mental health of women of childbearing age, which may lead to symptoms such as hypomenorrhea or infertility. Presently, hysteroscopic transcervical resection of adhesion (TCRA) is the principal therapy for IUAs, although its function in preventing the recurrence of adhesion and preserving fertility is limited. Pharmaceuticals such as hormones and vasoactive agents and the placement of nondegradable stents are the most common postoperative adjuvant therapy methods. However, the repair of injured endometrium is relatively restricted due to the different anatomical structures of the endometrium. Recently, the treatment outcome of IUAs has improved with the advancement of hysteroscopic techniques. In particular, the application of bioactive scaffolds combined with tissue engineering technology has proven to have high therapeutic potential or endometrial repair in IUA treatment. Herein, this review has summarized past therapeutic strategies, including postoperative adjuvant therapy, cell or therapeutic molecular delivery therapy methods and bioactive scaffold-based tissue engineering methods. Therefore, this review presented the recent therapeutic strategies for repairing endometrium treatment and pointed out the issues of clinical concern to provide alternative methods for the management of IUAs.
Collapse
Affiliation(s)
- Junyan Ma
- Zhejiang Provincial Key Laboratory for Precision Diagnosis & Treatment of Major Gynecological Diseases, Hangzhou, 310006, Zhejiang Province, China
| | - Hong Zhan
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Wen Li
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Liqi Zhang
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Feng Yun
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Ruijin Wu
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| | - Jun Lin
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| | - Yangyang Li
- Zhejiang Provincial Key Laboratory for Precision Diagnosis & Treatment of Major Gynecological Diseases, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
9
|
Ni X, Shan X, Xu L, Yu W, Zhang M, Lei C, Xu N, Lin J, Wang B. Adipose-derived stem cells combined with platelet-rich plasma enhance wound healing in a rat model of full-thickness skin defects. Stem Cell Res Ther 2021; 12:226. [PMID: 33823915 PMCID: PMC8022317 DOI: 10.1186/s13287-021-02257-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022] Open
Abstract
Background Wound healing is impaired in patients with diabetes due to the multifactorial etiology of the disease, which limits the therapeutic efficacy of various approaches. This study hypothesizes that the combination of adipose-derived stem cells (ADSCs) and platelet-rich plasma (PRP) might achieve optimally efficient diabetic wound healing. Methods ADSCs were isolated from the adipose tissues of Sprague-Dawley (SD) rats. PRP was prepared by using a two-step centrifugation technique. A diabetic wound model was established on the backs of SD rats to evaluate the effect of ADSCs incorporated into PRP. Hematoxylin and eosin staining, immunofluorescence, and immunohistochemistry were performed to observe the changes in neovascularization. ELISA and Western blot were utilized to detect the angiogenesis-related protein expression levels. The proliferation of endothelial cells was assessed by the MTS assay. Results ADSCs incorporated into PRP induced a higher wound closure rate than ADSCs, PRP, and negative control. The expression levels of VEGF, p-STAT3, and SDF-1 in the ADSC+PRP group were higher than those in the other groups. Moreover, the proliferation of endothelial cells was strongly stimulated by treatment with the combination of ADSC-conditioned medium (ADSC-CM) and PRP. Conclusions PRP enhanced diabetic wound healing induced by ADSCs, and its promoting effect involved neovascularization.
Collapse
Affiliation(s)
- Xuejun Ni
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiuying Shan
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Lili Xu
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Wenjun Yu
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Mingliang Zhang
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Chen Lei
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Nating Xu
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Junyu Lin
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Biao Wang
- Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
10
|
Huang Q, Liu B, Jiang R, Liao S, Wei Z, Bi Y, Liu X, Deng R, Jin Y, Tan Y, Yang Y, Qin A. G-CSF-mobilized peripheral blood mononuclear cells combined with platelet-rich plasma accelerate restoration of ovarian function in cyclophosphamide-induced POI rats†. Biol Reprod 2020; 101:91-101. [PMID: 31034039 DOI: 10.1093/biolre/ioz077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/21/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) are rich in hematopoietic cells and mesenchymal stem cells. Platelet-rich plasma (PRP) is rich in various growth factors. PBMCs and PRP have been suggested, individually, to restore ovarian function by improving the local microenvironment. The current study investigated the effect of granulocyte colony-stimulating factor (G-CSF)-mobilized PBMCs combined with PRP on restoring ovarian function in rats with primary ovarian insufficiency (POI). Thirty adult female rats were randomly subdivided into five groups: normal control (control), cyclophosphamide (CTX) plus subsequent PBS (POI + PBS), CTX plus subsequent PRP (POI + PRP), CTX plus subsequent G-CSF-mobilized PBMCs (POI + PBMCs), and CTX plus subsequent G-CSF-mobilized PBMCs combined with PRP (POI + PBMCs + PRP). CTX exposure induced the typical POI phenotype with increased diestrus; shortened estrus; follicle arrest at all stages; decreased serum levels of estradiol-17β (E2) and anti-Mullerian hormone (AMH); and increased levels of follicle-stimulating hormone (FSH). Transplantation of mobilized PBMCs with PRP resulted in a much earlier restoration of the estrous cycle, sex hormone levels, and preantral follicle growth in POI rats. Expression of the male-specific Sry gene in the ovarian tissues of POI + PBMCs + PRP female recipient rats was evident at 5, 10, and 20 days posttransplantation along with significant increases in the expression of angiogenesis markers CD34+ and VEGF and folliculogenesis markers AMH and FSHR. Additionally, PBMCs in combination with PRP mitigated granulosa cell apoptosis by downregulating BAX and upregulating BCL-2. These results demonstrate that G-CSF-mobilized PBMCs combined with PRP accelerate the restoration of ovarian function in POI rats by increasing ovarian neovascularization, reducing granulosa cell apoptosis, and promoting folliculogenesis.
Collapse
Affiliation(s)
- Qiuyan Huang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Liu
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rufang Jiang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengbin Liao
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiyao Wei
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yin Bi
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xueyuan Liu
- Center of Reproductive Medicine, The Guangxi Zhuang Autonomous Region Family Planning Research Center, Nanning, Guangxi, China
| | - Rong Deng
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yufu Jin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ying Tan
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yihua Yang
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Aiping Qin
- Center of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Improvement of Skeletal Muscle Regeneration by Platelet-Rich Plasma in Rats with Experimental Chronic Hyperglycemia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6980607. [PMID: 32766312 PMCID: PMC7374220 DOI: 10.1155/2020/6980607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/05/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Herein, the structural effect of autologous platelet-rich plasma (PRP) on posttraumatic skeletal muscle regeneration in rats with chronic hyperglycemia (CH) was tested. 130 white laboratory male rats divided into four groups (I—control; II—rats with CH; III—rats with CH and PRP treatment; and IV—rats for CH confirmation) were used for the experiment. CH was simulated by streptozotocin and nicotinic acid administration. Triceps surae muscle injury was reproduced by transverse linear incision. Autologous PRP was used in order to correct the possible negative CH effect on skeletal muscle recovery. On the 28th day after the injury, the regenerating muscle fiber and blood vessel number in the CH+PRP group were higher than those in the CH rats. However, the connective tissue area in the CH group was larger than that in the CH+PRP animals. The amount of agranulocytes in the regenerating muscle of the CH rats was lower compared to that of the CH+PRP group. The histological analysis of skeletal muscle recovery in CH+PRP animals revealed more intensive neoangiogenesis compared to that in the CH group. Herewith, the massive connective tissue development and inflammation signs were observed within the skeletal muscle of CH rats. Obtained results suggest that streptozotocin-induced CH has a negative effect on posttraumatic skeletal muscle regeneration, contributing to massive connective tissue development. The autologous PRP injection promotes muscle recovery process in rats with CH, shifting it away from fibrosis toward the complete muscular organ repair.
Collapse
|
12
|
Mechanical on-off gates for regulation of drug release in cutaneous or musculoskeletal tissue repairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111048. [PMID: 32600683 DOI: 10.1016/j.msec.2020.111048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Drug release synchronized with tissue motion is attractive to cutaneous or musculoskeletal tissue injury repair. Here, we have developed a method of regulating drug release by mechanical on-off gates for potential treatment of repeated injury in these tissues. The mechanical gates consisted of a multilayer structure: A brittle outmost layer adhered to an elastic middle layer, which wrapped an inmost drug carrier to form the composite multilayer structure. When it was stretched, cracks appeared as mechanical gates due to mechanical performance difference between the outmost layer and the middle layer, leading to the drug release. When the external force disappeared, it recovered to stop the drug release. The controlled drug release would therefore be achieved by changing the status (opening or closure) of mechanical gates through applying this on-off mechanical stretching. A prototype based on the composite multilayer structure of adhesive coating and electrospinning technique realized the controlled release of drug and effectively repaired the incision. More types of composite multilayer structures for mechanical drug release were expected to meet curing requirement in cutaneous or musculoskeletal tissues.
Collapse
|
13
|
Aydın O, Pehlivanlı F, Karaca G, Aydın G, Altunkaya C, Bulut H. May dexpanthenol, platelet-rich plasma, and thymoquinone provide new hope to maintain liver regeneration after partial hepatectomy? TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 30:826-834. [PMID: 31530526 DOI: 10.5152/tjg.2019.18697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Complete liver regeneration may not always be possible after liver injuries and/or partial liver resection. The present study investigated the effects of dexpanthenol, platelet-rich plasma (PRP), and thymoquinone on liver regeneration in rats after partial hepatectomy (PH). MATERIALS AND METHODS A total of 34 Wistar albino rats, each weighing 250-280 g, were randomly separated into four groups. PH was performed, and except for the control group, intraperitoneal dexpanthenol, PRP, or thymoquinone was administered to the relevant groups for 7 days. All rats were then sacrificed, and the liver tissues were examined histopathologically and biochemically. RESULTS PRP reduced all oxidant-antioxidant parameters in rats that experienced liver regeneration, but did not create histopathological improvement in the liver tissue. Dexpanthenol had a histopathological improving effect on the liver tissue, but had no effect on biochemical parameters. Thymoquinone showed no histopathological or biochemical effects on liver regeneration. CONCLUSION Although dexpanthenol did not affect biochemical oxidative parameters, it was considered to have improving effects on liver regeneration histopathologically. In addition, it was thought that PRP may be used for treatment of ischemia-reperfusion injury and cholestatic damage of the liver. Nevertheless, further studies are required on these subjects.
Collapse
Affiliation(s)
- Okan Aydın
- Department of General Surgery, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Faruk Pehlivanlı
- Department of General Surgery, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Gökhan Karaca
- Department of General Surgery, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Gülçin Aydın
- Department of Anesthesiology and Reanimation, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Canan Altunkaya
- Department of Pathology, Kırıkkale University School of Medicine, Kırıkkale, Turkey
| | - Huri Bulut
- Department of Medical Biochemistry, Bezmialem Vakıf University, İstanbul, Turkey
| |
Collapse
|