1
|
Cai A, Chen Y, Wang LS, Cusick JK, Shi Y. Depicting Biomarkers for HER2-Inhibitor Resistance: Implication for Therapy in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:2635. [PMID: 39123362 PMCID: PMC11311605 DOI: 10.3390/cancers16152635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is highly expressed in a variety of cancers, including breast, lung, gastric, and pancreatic cancers. Its amplification is linked to poor clinical outcomes. At the genetic level, HER2 is encoded by the ERBB2 gene (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), which is frequently mutated or amplified in cancers, thus spurring extensive research into HER2 modulation and inhibition as viable anti-cancer strategies. An impressive body of FDA-approved drugs, including anti-HER2 monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and HER2-tyrosine kinase inhibitors (TKIs), have demonstrated success in enhancing overall survival (OS) and disease progression-free survival (PFS). Yet, drug resistance remains a persistent challenge and raises the risks of metastatic potential and tumor relapse. Research into alternative therapeutic options for HER2+ breast cancer therefore proves critical for adapting to this ever-evolving landscape. This review highlights current HER2-targeted therapies, discusses predictive biomarkers for drug resistance, and introduces promising emergent therapies-especially combination therapies-that are aimed at overcoming drug resistance in the context of HER2+ breast cancer.
Collapse
Affiliation(s)
- Alvan Cai
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Lily S. Wang
- University of California, Berkeley, CA 94720, USA;
| | - John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
2
|
Park MH, Seo JH, Park JH, Seong MK, Park KU, Kim MK, Chang M, Koh SJ, Lee MH, Lim ST, Yoo YB, Oh SY, Kim SH, Ahn KY, Park TH, Ju H, Baek EH, Kim S, Kim N, Lee E, Kim TH. Efficacy and safety of biosimilar trastuzumab (CT-P6) in routine clinical practice in the Republic of Korea: a real-world post-marketing surveillance study. Expert Opin Biol Ther 2024; 24:305-312. [PMID: 38664937 DOI: 10.1080/14712598.2024.2334386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
BACKGROUND The trastuzumab biosimilar CT-P6 is approved for human epidermal growth factor receptor 2 (HER2)-positive early breast cancer (EBC), metastatic breast cancer (MBC), and metastatic gastric cancer (MGC). The objective of this post-marketing surveillance (PMS) study was to evaluate the real-world safety and effectiveness of CT-P6 in patients with HER2-positive cancers. RESEARCH DESIGN AND METHODS This open-label, observational, prospective, PMS study collected data via investigator surveys from 35 centers in the Republic of Korea (5 October 2018-4 October 2022). Eligible patients with HER2-positive EBC, MBC, or MGC started CT-P6 treatment during routine clinical practice, followed by 1-year observation. Evaluations included adverse events (AEs), adverse drug reactions (ADRs), and effectiveness. RESULTS Safety was analyzed in 642 patients (494 EBC, 94 MBC, 54 MGC). Overall, 325 (50.6%) patients experienced 1316 AEs, and 550 ADRs occurred in 199 (31.0%) patients. Unexpected ADRs occurred in 62 (9.7%) patients. Unexpected ADRs and ADRs of special interest did not raise any new safety signals. Among trastuzumab-naïve patients, 34/106 (32.1%) with EBC achieved pathological complete response; 30/74 (40.5%) MBC and 24/49 (49.0%) MGC patients achieved complete or partial response. CONCLUSIONS In a real-world setting, CT-P6 demonstrated safety and efficacy findings consistent with previous CT-P6 studies.
Collapse
Affiliation(s)
- Min Ho Park
- Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jae Hong Seo
- Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jung Ho Park
- Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Min-Ki Seong
- Korea Cancer Center Hospital, Seoul, Republic of Korea
| | - Keon Uk Park
- Keimyung University Dongsan Medical Hospital, Daegu, Republic of Korea
| | - Min Kyoon Kim
- Chung-Ang University Hospital, Seoul, Republic of Korea
| | | | - Su-Jin Koh
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Moon Hee Lee
- Inha University Hospital, Incheon, Republic of Korea
| | - Seung Taek Lim
- Wonju Severance Christian Hospital, Wonju, Republic of Korea
| | - Young Bum Yoo
- Konkuk University Medical Center, Seoul, Republic of Korea
| | - So Yeon Oh
- Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | | | | | | | - Hana Ju
- Celltrion, Inc., Incheon, Republic of Korea
| | | | - Sinhye Kim
- Celltrion, Inc., Incheon, Republic of Korea
| | - Nahyun Kim
- Celltrion, Inc., Incheon, Republic of Korea
| | | | - Tae Hyun Kim
- Inje University, Busan Paik Hospital, Busan, Republic of Korea
| |
Collapse
|
3
|
Wyrwicz L, Rodríguez Sánchez CA, Sánchez-Rovira P, Lewis S, Sandschafer D, San T. Real-world clinical scenarios during introduction of trastuzumab biosimilar for HER2-positive breast cancer in the European Union. Future Oncol 2024; 20:821-832. [PMID: 38305004 DOI: 10.2217/fon-2023-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Aim: Trastuzumab-anns is an intravenously administered biosimilar to trastuzumab approved by the EMA and US FDA for treatment of HER2+ early and metastatic breast cancer as well as metastatic gastric cancer. Lack of real-world characterization of biosimilar use has hindered uptake. Methods: This observational chart review characterizes 488 patients who received trastuzumab-anns in EU clinical practice settings. Results: Approximately 2/3rds of patients initiated trastuzumab-anns in adjuvant and neoadjuvant settings and most were naive new starters (70%). 30% were switchers from another trastuzumab, among whom 48% switched from trastuzumab iv. reference product. Common reasons for trastuzumab-anns discontinuation were a switch to another biosimilar product (34.8%, n = 85) or to trastuzumab reference product (15.6%, n = 38). Conclusion: Trastuzumab-anns was widely used in various treatment settings for HER2+ breast cancer.
Collapse
Affiliation(s)
- Lucjan Wyrwicz
- Department of Oncology & Radiotherapy, Maria Sklodowska Curie National Cancer Research Institute, Warsaw, Poland
| | | | | | - Sandra Lewis
- Global Medical Affairs, Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | - Tevy San
- Centre Oncologie et Radiothérapie, Chambray-lès-Tours, Centre-Val de Loire, France
| |
Collapse
|
4
|
Shabaneh TB, Stevens AR, Stull SM, Shimp KR, Seaton BW, Gad EA, Jaeger-Ruckstuhl CA, Simon S, Koehne AL, Price JP, Olson JM, Hoffstrom BG, Jellyman D, Riddell SR. Systemically administered low-affinity HER2 CAR T cells mediate antitumor efficacy without toxicity. J Immunother Cancer 2024; 12:e008566. [PMID: 38325903 PMCID: PMC11145640 DOI: 10.1136/jitc-2023-008566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The paucity of tumor-specific targets for chimeric antigen receptor (CAR) T-cell therapy of solid tumors necessitates careful preclinical evaluation of the therapeutic window for candidate antigens. Human epidermal growth factor receptor 2 (HER2) is an attractive candidate for CAR T-cell therapy in humans but has the potential for eliciting on-target off-tumor toxicity. We developed an immunocompetent tumor model of CAR T-cell therapy targeting murine HER2 (mHER2) and examined the effect of CAR affinity, T-cell dose, and lymphodepletion on safety and efficacy. METHODS Antibodies specific for mHER2 were generated, screened for affinity and specificity, tested for immunohistochemical staining of HER2 on normal tissues, and used for HER2-targeted CAR design. CAR candidates were evaluated for T-cell surface expression and the ability to induce T-cell proliferation, cytokine production, and cytotoxicity when transduced T cells were co-cultured with mHER2+ tumor cells in vitro. Safety and efficacy of various HER2 CARs was evaluated in two tumor models and normal non-tumor-bearing mice. RESULTS Mice express HER2 in the same epithelial tissues as humans, rendering these tissues vulnerable to recognition by systemically administered HER2 CAR T cells. CAR T cells designed with single-chain variable fragment (scFvs) that have high-affinity for HER2 infiltrated and caused toxicity to normal HER2-positive tissues but exhibited poor infiltration into tumors and antitumor activity. In contrast, CAR T cells designed with an scFv with low-affinity for HER2 infiltrated HER2-positive tumors and controlled tumor growth without toxicity. Toxicity mediated by high-affinity CAR T cells was independent of tumor burden and correlated with proliferation of CAR T cells post infusion. CONCLUSIONS Our findings illustrate the disadvantage of high-affinity CARs for targets such as HER2 that are expressed on normal tissues. The use of low-affinity HER2 CARs can safely regress tumors identifying a potential path for therapy of solid tumors that exhibit high levels of HER2.
Collapse
Affiliation(s)
- Tamer Basel Shabaneh
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Andrew R Stevens
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sylvia M Stull
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kristen R Shimp
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Brandon W Seaton
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ekram A Gad
- Comparative Medicine, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Carla A Jaeger-Ruckstuhl
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sylvain Simon
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Amanda L Koehne
- Experimental Histopathology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jason P Price
- Molecular Design and Therapeutics, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - James M Olson
- Molecular Design and Therapeutics, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - David Jellyman
- Antibody Technology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
5
|
Piñeiro-Lamas B, López-Cheda A, Cao R, Ramos-Alonso L, González-Barbeito G, Barbeito-Caamaño C, Bouzas-Mosquera A. A cardiotoxicity dataset for breast cancer patients. Sci Data 2023; 10:527. [PMID: 37553506 PMCID: PMC10409791 DOI: 10.1038/s41597-023-02419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
This dataset is a result of the collaboration between the University of A Coruña and the University Hospital of A Coruña. It contains information about 531 women diagnosed with HER2+ breast cancer, treated with potentially cardiotoxic oncologic therapies. These treatments can cause cardiovascular adverse events, including cardiac systolic dysfunction, the development of which has important clinical and prognostic implications. The availability of good predictors may enable early detection of these cardiac problems. Variables such as age, weight and height are available for each patient, as well as some measures obtained from echocardiography, a technique used prior and during the treatment to check the structure and function of the heart. Among them, there is a functional variable that measures the myocardial velocity during the cardiac cycle. For patients that experienced cancer therapy-related cardiac dysfunction during the treatment period, time until its appearance is known. This dataset aims to enable the scientific community in conducting new research on this cardiovascular side effect.
Collapse
Affiliation(s)
- Beatriz Piñeiro-Lamas
- Grupo MODES, Departamento de Matemáticas, CITIC, Universidade da Coruña, A Coruña, 15071, Spain.
| | - Ana López-Cheda
- Grupo MODES, Departamento de Matemáticas, CITIC, Universidade da Coruña, A Coruña, 15071, Spain
| | - Ricardo Cao
- Grupo MODES, Departamento de Matemáticas, CITIC, Universidade da Coruña, A Coruña, 15071, Spain
| | - Laura Ramos-Alonso
- Servicio de Medicina Interna, Complexo Hospitalario Universitario de A Coruña, A Coruña, 15006, Spain
| | - Gabriel González-Barbeito
- Unidad de Imagen y Función Cardíaca, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, 15006, Spain
| | - Cayetana Barbeito-Caamaño
- Unidad de Imagen y Función Cardíaca, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, 15006, Spain
| | - Alberto Bouzas-Mosquera
- Unidad de Imagen y Función Cardíaca, Servicio de Cardiología, Complexo Hospitalario Universitario de A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, 15006, Spain
| |
Collapse
|
6
|
Lourenço AL, Chuo SW, Bohn MF, Hann B, Khan S, Yevalekar N, Patel N, Yang T, Xu L, Lv D, Drakas R, Lively S, Craik CS. High-throughput optofluidic screening of single B cells identifies novel cross-reactive antibodies as inhibitors of uPAR with antibody-dependent effector functions. MAbs 2023; 15:2184197. [PMID: 36859773 PMCID: PMC9988344 DOI: 10.1080/19420862.2023.2184197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice. A total of 80 human and cynomolgus uPAR cross-reactive plasma cells were identified, and selected mouse VH/VL domains were linked to the trastuzumab (Herceptin®) constant domains for the expression of mouse-human chimeric antibodies. The resulting rAbs were characterized by their tumor-cell recognition, binding activity, and cell adhesion inhibition on triple-negative breast cancer cells. In addition, the rAbs were shown to enact antibody-dependent cellular cytotoxicity (ADCC) in the presence of either human natural killer cells or peripheral blood mononuclear cells, and were evaluated for the potential use of uPAR-targeting antibody-drug conjugates (ADCs). Three lead antibodies (11857, 8163, and 3159) were evaluated for their therapeutic efficacy in vivo and were shown to suppress tumor growth. Finally, the binding epitopes of the lead antibodies were characterized, providing information on their unique binding modes to uPAR. Altogether, the strategy identified unique cross-reactive antibodies with ADCC, ADC, and functional inhibitory effects by targeting cell-surface uPAR, that can be tested in safety studies and serve as potential immunotherapeutics.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Markus F Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Shireen Khan
- ChemPartner, South San Francisco, California, USA
| | | | - Nitin Patel
- ChemPartner, South San Francisco, California, USA
| | - Teddy Yang
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Lina Xu
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Dandan Lv
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Robert Drakas
- ShangPharma Innovation Inc, South San Francisco, California, USA
| | - Sarah Lively
- ChemPartner, South San Francisco, California, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Cicin İ, Oukkal M, Mahfouf H, Mezlini A, Larbaoui B, Ahmed SB, Errihani H, Alsaleh K, Belbaraka R, Yumuk PF, Goktas B, Özgüroğlu M. An Open-Label, Multinational, Multicenter, Phase IIIb Study with Subcutaneous Administration of Trastuzumab in Patients with HER2-Positive Early Breast Cancer to Evaluate Patient Satisfaction. Eur J Breast Health 2022; 18:63-73. [DOI: 10.4274/ejbh.galenos.2021.2021-9-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/06/2021] [Indexed: 12/01/2022]
|
8
|
Brickler M, Raskin A, Ryan TD. Current State of Pediatric Cardio-Oncology: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:127. [PMID: 35204848 PMCID: PMC8870613 DOI: 10.3390/children9020127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The landscape of pediatric oncology has dramatically changed over the course of the past several decades with five-year survival rates surpassing 80%. Anthracycline therapy has been the cornerstone of many chemotherapy regimens for pediatric patients since its introduction in the 1960s, and recent improved survival has been in large part due to advancements in chemotherapy, refinement of supportive care treatments, and development of novel therapeutics such as small molecule inhibitors, chimeric antigen receptor T-cell therapy, and immune checkpoint inhibitors. Unfortunately, many cancer-targeted therapies can lead to acute and chronic cardiovascular pathologies. The range of cardiotoxicity can vary but includes symptomatic or asymptotic heart failure, arrhythmias, coronary artery disease, valvar disease, pericardial disease, hypertension, and peripheral vascular disease. There is lack of data guiding primary prevention and treatment strategies in the pediatric population, which leads to substantial practice variability. Several important future research directions have been identified, including as they relate to cardiac disease, prevention strategies, management of cardiovascular risk factors, risk prediction, early detection, and the role of genetic susceptibility in development of cardiotoxicity. Continued collaborative research will be key in advancing the field. The ideal model for pediatric cardio-oncology is a proactive partnership between pediatric cardiologists and oncologists in order to better understand, treat, and ideally prevent cardiac disease in pediatric oncology patients.
Collapse
Affiliation(s)
| | | | - Thomas D. Ryan
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| |
Collapse
|
9
|
Ginsenoside Rg2 Attenuated Trastuzumab-Induced Cardiotoxicity in Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8866660. [PMID: 35071601 PMCID: PMC8769853 DOI: 10.1155/2022/8866660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/03/2023]
Abstract
Aim Trastuzumab (TZM) is a monoclonal antibody drug for HER2-positive breast cancer by targeting epidermal growth factor 2, but it has significant cardiotoxicity. Ginsenoside Rg2 has shown a variety of biological activities. This study was aimed at investigating whether Rg2 attenuates TZM-induced cardiotoxicity. Methods A model of TZM-induced cardiotoxicity was established in Wistar rats, and the rats were pretreated with Rg2. After echocardiography analysis, the rats were killed and the hearts were dissected for RNAseq analysis. Primary human cardiomyocytes (HCMs) were treated with TZM with or without pretreatment with Rg2 and then subjected to a colony formation assay, flow cytometry analysis, and Western blot analysis for the detection of caspase-3, caspase-9, and BAX. Results TZM induced LV dysfunction in rats, but Rg2 could attenuate TZM-induced LV dysfunction. The mRNA levels of caspase-3, caspase-9, and BAX were significantly higher in TZM-treated rats. The colony formation ability of HCMs was significantly lower in TZM-treated cells but was recovered after pretreatment with Rg2. The apoptosis rate of HCMs was significantly higher in TZM-treated cells but was significantly lower after pretreatment with Rg2. Moreover, protein levels of caspase-3, caspase-9, and BAX were significantly higher in TZM-treated cells but were significantly lower after pretreatment with Rg2. Conclusion Ginsenoside Rg2 inhibited TZM-induced cardiotoxicity, and the mechanism may be related to the downregulation of the expression of proapoptotic proteins caspase-3, caspase-9, and BAX and the inhibition of TZM-induced apoptosis in cardiomyocytes. Ginsenoside Rg2 has a potential to be applied in patients with breast cancer to prevent TZM-induced cardiotoxicity.
Collapse
|
10
|
Li XF, Liu CF, Rao GW. Monoclonal Antibodies, Small Molecule Inhibitors and Antibody-drug Conjugates as HER2 Inhibitors. Curr Med Chem 2021; 28:3339-3360. [PMID: 32900344 DOI: 10.2174/0929867327666200908112847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022]
Abstract
Overexpression of human epidermal growth factor receptor (HER)-2 is found in a variety of cancers, often portending poor clinical outcomes. Therefore, HER2 is an attractive target for treatment. This review describes the research progress of HER2 targeted inhibitors in recent years. Excellent reviews are available, so we focus on the development, mechanisms of action, and structure-activity relationships of different types of inhibitors, including monoclonal antibodies, small molecule inhibitors, and antibody-drug conjugates (ADCs). In addition, the differences among them are compared.
Collapse
Affiliation(s)
- Xiu-Fang Li
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Liu G, Qi X, Li X, Sun F. Ginsenoside Rg2 protects cardiomyocytes against trastuzumab-induced toxicity by inducing autophagy. Exp Ther Med 2021; 21:473. [PMID: 33767768 PMCID: PMC7976377 DOI: 10.3892/etm.2021.9904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Trastuzumab (TZM) significantly improves the outcomes of patients with breast cancer; however, it is associated with severe cardiotoxicity. Ginsenoside Rg2 was reported to exert protective effects against myocardial injury and apoptosis in human cardiomyocytes (HCMs). However, whether ginsenoside Rg2 protects HCMs against TZM-induced toxicity remains unclear. The present study investigated the proliferation of HCMs using a Cell Counting Kit-8 assay and Ki67 immunofluorescence staining. Apoptotic cells were detected by Annexin V/propidium iodide staining and flow cytometry. Furthermore, monodansylcadaverine staining was performed to detect cell autophagy. In addition, western blotting was used to detect the expression levels of phosphorylated (p)-Akt, p-mTOR, beclin 1, microtubule associated protein 1 light chain 3α (LC3) and autophagy protein 5 (ATG5) in HCMs. Pretreatment with ginsenoside Rg2 significantly protected HCMs against TZM-induced cytotoxicity by inhibiting apoptosis. Furthermore, pretreatment with ginsenoside Rg2 induced autophagy in HCMs by upregulating the expression levels of p-Akt, p-mTOR, beclin 1, LC3 and ATG5. The results obtained in the present study suggested that ginsenoside Rg2 could protect HCMs against TZM-induced cardiotoxicity by activating autophagy. Therefore, ginsenoside Rg2 may serve as a potential therapeutic agent to prevent TZM-related cardiotoxicity in patients with breast cancer.
Collapse
Affiliation(s)
- Guang Liu
- Department of Cardiovascular Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaoyong Qi
- Department of Cardiovascular Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Xingtao Li
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fangyi Sun
- Department of Cardiovascular Medicine, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
12
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Khoury K, Lynce F, Barac A, Geng X, Dang C, Yu AF, Smith KL, Gallagher C, Pohlmann PR, Nunes R, Herbolsheimer P, Warren R, Srichai MB, Hofmeyer M, Asch F, Tan M, Isaacs C, Swain SM. Long-term follow-up assessment of cardiac safety in SAFE-HEaRt, a clinical trial evaluating the use of HER2-targeted therapies in patients with breast cancer and compromised heart function. Breast Cancer Res Treat 2021; 185:863-868. [PMID: 33400034 PMCID: PMC8207895 DOI: 10.1007/s10549-020-06053-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE HER2-targeted therapies are associated with cardiotoxicity which is usually asymptomatic and reversible. We report the updated cardiac safety assessment of patients with compromised heart function receiving HER2-targeted therapy for breast cancer, enrolled in the SAFE-HEaRt trial, at a median follow-up of 3.5 years. METHODS Thirty patients with stage I-IV HER2-positive breast cancer receiving trastuzumab with or without pertuzumab, or ado-trastuzumab emtansine (T-DM1), with asymptomatic LVEF (left ventricular ejection fraction) 40-49%, were started on cardioprotective medications, with the primary endpoint being completion of HER2-targeted therapy without cardiac events (CE) or protocol-defined asymptomatic worsening of LVEF. IRB-approved follow-up assessment included 23 patients. RESULTS Median follow-up as of June 2020 is 42 months. The study met its primary endpoint with 27 patients (90%) completing their HER2-targeted therapies without cardiac issues. Of the 23 evaluable patients at long-term f/u, 14 had early stage breast cancer, and 9 had metastatic disease, 8 of whom remained on HER2-targeted therapies. One patient developed symptomatic heart failure with no change in LVEF. There were no cardiac deaths. The mean LVEF improved to 52.1% from 44.9% at study baseline, including patients who remained on HER2-targeted therapy, and those who received prior anthracyclines. CONCLUSIONS Long-term follow-up of the SAFE-HEaRt study continues to provide safety data of HER2-targeted therapy use in patients with compromised heart function. The late development of cardiac dysfunction is uncommon and continued multi-disciplinary oncologic and cardiac care of patients is vital for improved patient outcomes.
Collapse
Affiliation(s)
- Katia Khoury
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
- O'Neal Comprehensive Cancer Center at UAB, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Filipa Lynce
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, Washington DC, USA
| | - Xue Geng
- Georgetown University, Washington DC, USA
| | - Chau Dang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony F Yu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen L Smith
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Paula R Pohlmann
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
| | - Raquel Nunes
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Robert Warren
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
| | | | - Mark Hofmeyer
- MedStar Heart and Vascular Institute, Washington DC, USA
| | - Federico Asch
- MedStar Heart and Vascular Institute, Washington DC, USA
| | - Ming Tan
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA
- Georgetown University, Washington DC, USA
| | - Sandra M Swain
- Lombardi Comprehensive Cancer Center, MedStar Georgetown University Hospital, Washington DC, USA.
- MedStar Health, Columbia, MD, USA.
- Georgetown University Medical Center, Building D Room 120, 4000 Reservoir Road NW, Washington DC, 20057, USA.
| |
Collapse
|
14
|
Xu Y, Wang L, Pan D, Yan J, Wang X, Yang R, Li M, Liu Y, Yang M. Synthesis of a novel 89Zr-labeled HER2 affibody and its application study in tumor PET imaging. EJNMMI Res 2020; 10:58. [PMID: 32495181 PMCID: PMC7271293 DOI: 10.1186/s13550-020-00649-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human epidermal growth factor receptor-2 (HER2) is an essential biomarker for tumor treatment. Affibody is an ideal vector for preparing HER2 specific probes because of high affinity and rapid clearance from normal tissues, etc. Zirconium-89 is a PET imaging isotope with a long half-life and suitable for monitoring biological processes for more extended periods. In this study, a novel 89Zr-labeled HER2 affibody, [89Zr]Zr-DFO-MAL-Cys-MZHER2, was synthesized, and its imaging characters were also assessed. RESULTS The precursor, DFO-MAL-Cys-MZHER2, was obtained with a yield of nearly 50%. The radiochemical yield of [89Zr]Zr -DFO-MAL-Cys-MZHER2 was 90.2 ± 1.9%, and the radiochemical purity was higher than 95%. The total synthesis time was only 30 min. The probe was stable in PBS and serum. The tracer accumulated in HER2 overexpressing human ovarian cancer SKOV-3 cells. In vivo studies in mice bearing tumors showed that the probe was highly retained in SKOV-3 xenografts even for 48 h. The tumors were visualized with good contrast to normal tissues. ROI analysis revealed that the average uptake values in the tumor were greater than 5% IA/g during 48 h postinjection. On the contrary, the counterparts of MCF-7 tumors kept low levels ( ~ 1% IA/g). The outcome was consistent with the immunohistochemical analysis and ex vivo autoradiography. The probe quickly cleared from the normal organs except kidneys and mainly excreted through the urinary system. CONCLUSION The novel HER2 affibody for PET imaging was easily prepared with satisfactory labeling yield and radiochemical purity. [89Zr]Zr-DFO-MAL-Cys-MZHER2 is a potential candidate for detecting HER2 expression. It may play specific roles in clinical cancer theranostics.
Collapse
Affiliation(s)
- Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.,Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Xinyu Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Mingzhu Li
- Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Yu Liu
- Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China. .,Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
15
|
Deng H, Du X, Wang L, Chen M. Six Months vs. 12 Months of Adjuvant Trastuzumab Among Women With HER2-Positive Early-Stage Breast Cancer: A Meta-Analysis of Randomized Controlled Trials. Front Oncol 2020; 10:288. [PMID: 32266131 PMCID: PMC7098966 DOI: 10.3389/fonc.2020.00288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/19/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose: Both 12 and 6 months of trastuzumab in combination with chemotherapy are effective for HER2+ early-stage breast cancer. This meta-analysis was performed to assess the effectiveness and the toxicity of the two durations. Methods and Materials: We acquired relevant randomized controlled trials (RCTs) from PubMed, the Cochrane Library, ScienceDirect, EMBASE, Ovid MEDLINE, Web of Science, Scopus, and Google Scholar. Our endpoints included disease-free survival (DFS), overall survival (OS), number of recurrences, mortality and early stopping of trastuzumab, and adverse events (AEs). Results: We included five good-quality studies. Both durations of trastuzumab were effective among women with HER2+ early-stage breast cancer, but 12 months of trastuzumab appeared to have better DFS [hazard ratio (HR) = 1.10, 95% confidence interval (CI): 0.99-1.23, P = 0.09] and better OS than 6 months of trastuzumab (HR = 1.14, 95% CI: 0.99-1.32, P = 0.07). However, the 12 month group had more AEs, especially cardiac events [risk ratio (RR) = 0.66, 95% CI: 0.56-0.77, P < 0.00001]. In our sub-analyses, the 12 months duration had better DFS among patients using trastuzumab concurrently than the 6 months duration (HR = 1.23, 95% CI: 1.06-1.44, P = 0.006). Additionally, the 12 months duration had superior OS in women with ER-negative breast cancer (HR = 1.51, 95% CI: 1.10-2.08, P = 0.01) and patients treated with trastuzumab concurrently than the 6 months duration (HR = 1.61, 95% CI: 1.13-2.29, P = 0.008). Conclusions: Twelve months was the standard duration of adjuvant trastuzumab among patients with HER2+ early-stage breast cancer, with a tendency toward superior survival. However, patients in the 12 month group had more significant cardiac toxicity than those in the 6 month group.
Collapse
Affiliation(s)
- Huan Deng
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianghui Du
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
- Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Wang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ming Chen
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
- Department of Radiation Oncology, Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
16
|
|
17
|
Pediatric Cardio-Oncology: Development of Cancer Treatment-Related Cardiotoxicity and the Therapeutic Approach to Affected Patients. Curr Treat Options Oncol 2019; 20:56. [PMID: 31129800 DOI: 10.1007/s11864-019-0658-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT The past 5 decades have seen significant improvements in outcomes for pediatric patients with cancer. Unfortunately, children and adolescents who have been treated for cancer are five to six times more likely to develop cardiovascular disease as a result of their therapies. Cardiovascular disease may manifest in a plethora of ways, from asymptomatic ventricular dysfunction to end-stage heart failure, hypertension, arrhythmia, valvular disease, early coronary artery disease, or peripheral vascular disease. A number of treatment modalities are implicated in pediatric and adult populations, including anthracyclines, radiation therapy, alkylating agents, targeted cancer therapies (small molecules and antibody therapies), antimetabolites, antimicrotubule agents, immunotherapy, interleukins, and chimeric antigen receptor T cells. For some therapies, such as anthracyclines, the mechanism of injury is elucidated, but for many others it is not. While a few protective strategies exist, in many cases, observation and close monitoring is the only defense against developing end-stage cardiovascular disease. Because of the variety of potential outcomes after cancer therapy, a one-size-fits-all approach is not appropriate. Rather, a good working relationship between oncology and cardiology to assess the risks and benefits of various therapies and planning for appropriate surveillance is the best model. When disease is identified, any of a number of therapies may be appropriate; however, in the pediatric and adolescent population supportive data are limited.
Collapse
|