1
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
2
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
3
|
Zeng D, Yin C, Wei H, Li Y, Yang Y, Nie H, Pan Y, Xu R, Tai Y, Du J, Liu J, Wang P, Liu B, Liu B. Activation of Nrf2 antioxidant signaling alleviates gout arthritis pain and inflammation. Biomed Pharmacother 2024; 170:115957. [PMID: 38042115 DOI: 10.1016/j.biopha.2023.115957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Excessive deposition of monosodium urate (MSU) crystal in the joint results in gout arthritis, which triggers severe pain and affects life quality. Oxidative stress is a pivotal mechanism that contributes to etiology of gout pain and inflammation. Here we investigated whether activating Nrf2, which plays important roles in regulating endogenous antioxidant response, would attenuate gout arthritis via promoting antioxidant signaling in joint tissues. Gout arthritis model was established by intra-articular injection of MSU (500 μg/ankle) into the right ankle joint of mouse. Pharmacologically activating Nrf2 by activator oltipraz (50, 100 or 150 mg/kg, intraperitoneal) at 1 h before and 5, 23, 47 h after model establishment dose-dependently inhibited joint inflammation, mechanical and heat hypersensitivities in model mice. Oltipraz (100 mg/kg) reversed gait impairments without altering locomotor activity and reduced neutrophil infiltrations in ankle joints. In vitro studies revealed oltipraz (25 μM) inhibited MSU-induced ROS production in mouse macrophages and improved mitochondrial bioenergetics impairments caused by MSU. In vivo ROS imaging combined with biochemical assays confirmed the antioxidant effects of oltipraz on model mice. Nrf2 activation inhibited pro-inflammatory cytokine overproduction in ankle joint and attenuated the overexpression and enhancement in TRPV1 channel in DRG neurons innervating hind limb. Therapeutic effects of oltipraz were abolished by inhibiting Nrf2 or in Nrf2 knockout mice. These results suggest pharmacologically activating Nrf2 alleviates gout pain, gait impairments, inflammation and peripheral sensitization via Nrf2-dependent antioxidant mechanism. Targeting Nrf2 may represent a novel treatment option for gout arthritis.
Collapse
Affiliation(s)
- Danyi Zeng
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengyu Yin
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huina Wei
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Li
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunqin Yang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huimin Nie
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushuang Pan
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruoyao Xu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinggen Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Wang
- Department of Pathology, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Choi SR, Roh DH, Moon JY, Beitz AJ, Lee JH. Phase-specific differential regulation of mechanical allodynia in a murine model of neuropathic pain by progesterone. Front Pharmacol 2023; 14:1253901. [PMID: 38152690 PMCID: PMC10752602 DOI: 10.3389/fphar.2023.1253901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Progesterone has been shown to have neuroprotective capabilities against a wide range of nervous system injuries, however there are negative clinical studies that have failed to demonstrate positive effects of progesterone therapy. Specifically, we looked into whether progesterone receptors or its metabolizing enzymes, cytochrome P450c17 and 5α-reductase, are involved in the effects of progesterone on neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve in mice. Intrathecal progesterone administration during the induction phase of chronic pain enhanced mechanical allodynia development and spinal glial fibrillary acidic protein (GFAP) expression, and this enhancement was inhibited by administration of ketoconazole, a P450c17 inhibitor, but not finasteride, a 5α-reductase inhibitor. Furthermore, phospho-serine levels of P450c17 in the spinal cord were elevated on day 1 after CCI operation, but not on day 17. In contrast, intrathecal progesterone administration during the maintenance phase of chronic pain decreased the acquired pain and elevated GFAP expression; this inhibition was restored by finasteride administration, but not by ketoconazole. The modification of mechanical allodynia brought on by progesterone in CCI mice was unaffected by the administration of mifepristone, a progesterone receptor antagonist. Collectively, these findings imply that progesterone suppresses spinal astrocyte activation via 5α-reductase activity during the maintenance phase of chronic pain and has an analgesic impact on the mechanical allodynia associated with the growing neuropathy. Progesterone, however, stimulates spinal astrocytes during the induction stage of peripheral neuropathy and boosts the allodynic impact caused by CCI through early spinal P450c17 activation.
Collapse
Affiliation(s)
- Sheu-Ran Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, College of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Young Moon
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Alvin J. Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, United States
| | - Jang-Hern Lee
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Basu P, Maier C, Averitt DL, Basu A. NLR family pyrin domain containing 3 (NLRP3) inflammasomes and peripheral neuropathic pain - Emphasis on microRNAs (miRNAs) as important regulators. Eur J Pharmacol 2023; 955:175901. [PMID: 37451423 DOI: 10.1016/j.ejphar.2023.175901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Neuropathic pain is caused by the lesion or disease of the somatosensory system and can be initiated and/or maintained by both central and peripheral mechanisms. Nerve injury leads to neuronal damage and apoptosis associated with the release of an array of pathogen- or damage-associated molecular patterns to activate inflammasomes. The activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome contributes to neuropathic pain and may represent a novel target for pain therapeutic development. In the current review, we provide an up-to-date summary of the recent findings on the involvement of NLRP3 inflammasome in modulating neuropathic pain development and maintenance, focusing on peripheral neuropathic conditions. Here we provide a detailed review of the mechanisms whereby NLRP3 inflammasomes contribute to neuropathic pain via (1) neuroinflammation, (2) apoptosis, (3) pyroptosis, (4) proinflammatory cytokine release, (5) mitochondrial dysfunction, and (6) oxidative stress. We then present the current research literature reporting on the antinociceptive effects of several natural products and pharmacological interventions that target activation, expression, and/or regulation of NLRP3 inflammasome. Furthermore, we emphasize the effects of microRNAs as another regulator of NLRP3 inflammasome. In conclusion, we summarize the possible caveats and future perspectives that might provide successful therapeutic approaches against NLRP3 inflammasome for treating or preventing neuropathic pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research, The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Dayna L Averitt
- Division of Biology, School of the Sciences, Texas Woman's University, Denton, TX, 76204-5799, USA.
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
6
|
Luan Y, Luo Y, Deng M. New advances in Nrf2-mediated analgesic drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154598. [PMID: 36603339 DOI: 10.1016/j.phymed.2022.154598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oxidative stress is an inevitable process that occurs during life activities, and it can participate in the development of inflammation. Although great progress has been made according to research examining analgesic drugs and therapies, there remains a need to develop new analgesic drugs to fill certain gaps in both the experimental and clinical space. PURPOSE This review reports the research and preclinical progress of this class of analgesics by summarizing known nuclear factor E-2-related factor-2 (Nrf2) pathway-modulating substances. STUDY DESIGN We searched and reported experiments that intervene in the Nrf2 pathway and its various upstream and downstream molecules for analgesic therapy. METHODS The medical literature database (PubMed) was searched for experimental studies examining the reduction of pain in animals through the Nrf2 pathway, the research methods were analyzed, and the pathways were classified and reported according to the pathway of these experimental interventions. RESULTS Humans have identified a variety of substances that can fight pain by regulating the expression of Nrf2 and its upstream and downstream pathways. CONCLUSION The Nrf2 pathway exerts anti-inflammatory activity by regulating oxidative stress, thereby playing a role in the fight against pain.
Collapse
Affiliation(s)
- Yifan Luan
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yaping Luo
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, Hunan 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
7
|
Coral-Pérez S, Martínez-Martel I, Martínez-Serrat M, Batallé G, Bai X, Leite-Panissi CRA, Pol O. Treatment with Hydrogen-Rich Water Improves the Nociceptive and Anxio-Depressive-like Behaviors Associated with Chronic Inflammatory Pain in Mice. Antioxidants (Basel) 2022; 11:2153. [PMID: 36358525 PMCID: PMC9686765 DOI: 10.3390/antiox11112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 09/25/2023] Open
Abstract
Chronic inflammatory pain is manifested in many diseases. The potential use of molecular hydrogen (H2) as a new therapy for neurological disorders has been demonstrated. Recent studies prove its analgesic properties in animals with neuropathic pain, but the possible antinociceptive, antidepressant, and/or anxiolytic actions of H2 during persistent inflammatory pain have not been investigated. Therefore, using male mice with chronic inflammatory pain incited by the subplantar injection of complete Freud's adjuvant (CFA), we assessed the actions of hydrogen-rich water (HRW) systemically administered on: (1) the nociceptive responses and affective disorders associated and (2) the oxidative (4-hydroxy-2-nonenal; 4-HNE), inflammatory (phosphorylated-NF-kB inhibitor alpha; p-IKBα), and apoptotic (Bcl-2-like protein 4; BAX) changes provoked by CFA in the paws and amygdala. The role of the antioxidant system in the analgesia induced by HRW systemically and locally administered was also determined. Our results revealed that the intraperitoneal administration of HRW, besides reducing inflammatory pain, also inhibited the depressive- and anxiolytic-like behaviors associated and the over expression of 4-HNE, p-IKBα, and BAX in paws and amygdala. The contribution of the nuclear factor erythroid 2-related factor 2/heme oxygenase 1 and NAD(P)H: quinone oxidoreductase 1 pathway in the analgesic activities of HRW, systemically or locally administered, was also shown. These data revealed the analgesic, antidepressant, and anxiolytic actions of HRW. The protective, anti-inflammatory, and antioxidant qualities of this treatment during inflammatory pain were also demonstrated. Therefore, this study proposes the usage of HRW as a potential therapy for chronic inflammatory pain and linked comorbidities.
Collapse
Affiliation(s)
- Santiago Coral-Pérez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Martínez-Serrat
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R. A. Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Cazuza RA, Batallé G, Bai X, Leite-Panissi CRA, Pol O. Effects of treatment with a carbon monoxide donor and an activator of heme oxygenase 1 on the nociceptive, apoptotic and/or oxidative alterations induced by persistent inflammatory pain in the central nervous system of mice. Brain Res Bull 2022; 188:169-178. [PMID: 35952846 DOI: 10.1016/j.brainresbull.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
The activation of heme oxygenase 1 (HO-1)/carbon monoxide (CO) inhibits chronic inflammatory pain, but its role in the central nervous system (CNS) is not entirely known. We evaluated whether the treatment with an HO-1 inducer, cobalt protoporphyrin IX (CoPP), or a CO-releasing molecule, tricarbonyldichlororuthenium(II)dimer (CORM-2), modulates the nociceptive, apoptotic and/or oxidative responses provoked by persistent inflammatory pain in the CNS. In C57BL/6 male mice with peripheral inflammation caused by complete Freund's adjuvant (CFA), we assessed the effects of CORM-2 and CoPP on the expression of protein kinase B (Akt), the apoptotic protein BAX, and the antioxidant enzymes HO-1 and NADPH quinone oxidoreductase 1 (NQO1) in the periaqueductal gray matter (PAG), amygdala (AMG), ventral hippocampus (VHPC) and medial septal area (MSA). Our results showed that the increased expression of p-Akt caused by peripheral inflammation in the four analyzed brain areas was reversed by CORM-2 and CoPP therapies. Both treatments also normalized the upregulation of BAX induced by CFA on the VHPC and MSA. Oxidative stress, demonstrated with the decreased expression of HO-1 on the PAG and AMG, was normalized in CORM-2 and CoPP treated animals. CoPP also increased the expression of HO-1 on VHPC, and both treatments up-regulated the NQO1 levels on the PAG of CFA-injected animals. In conclusion, both CORM-2 and CoPP treatments inhibited the nociceptive and apoptotic responses generated by peripheral inflammation and/or potentiated the antioxidant responses in several brain areas revealing the new modulatory effects of these treatments in the CNS of animals with chronic inflammatory pain.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
9
|
Elucidating the Anti-Tumorigenic Efficacy of Oltipraz, a Dithiolethione, in Glioblastoma. Cells 2022; 11:cells11193057. [PMID: 36231019 PMCID: PMC9562012 DOI: 10.3390/cells11193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, displays a highly infiltrative growth pattern and remains refractory to chemotherapy. Phytochemicals carrying specificity and low cytotoxicity may serve as potent and safer alternatives to conventional chemotherapy for treating GBM. We have evaluated the anticancer effects of Oltipraz (Olt), a synthetic dithiolethione found in many vegetables, including crucifers. While Olt exposure was non-toxic to the HEK-293 cell line, it impaired the cell growth in three GBM cell lines (LN18, LN229, and U-87 MG), arresting those at the G2/M phase. Olt-exposed GBM cells induced the generation of reactive oxygen species (ROS), mitochondrial depolarization, caspase 3/7-mediated apoptosis, nuclear condensation, and DNA fragmentation, and decreased glutathione, a natural ROS scavenger, as well as vimentin and β-catenin, the EMT-associated markers. Its effect on a subpopulation of GBM cells exhibiting glioblastoma stem cell (GSCs)-like characteristics revealed a reduced expression of Oct4, Sox2, CD133, CD44, and a decrease in ALDH+, Nestin+ and CD44+ cells. In contrast, there was an increase in the expression of GFAP and GFAP+ cells. The Olt also significantly suppressed the oncosphere-forming ability of cells. Its efficacy was further validated in vivo, wherein oral administration of Olt could suppress the ectopically established GBM tumor growth in SCID mice. However, there was no alteration in body weight, organ ratio, and biochemical parameters, reflecting the absence of any toxicity otherwise. Together, our findings could demonstrate the promising chemotherapeutic efficacy of Olt with potential implications in treating GBM.
Collapse
|
10
|
Martínez-Serrat M, Martínez-Martel I, Coral-Pérez S, Bai X, Batallé G, Pol O. Hydrogen-Rich Water as a Novel Therapeutic Strategy for the Affective Disorders Linked with Chronic Neuropathic Pain in Mice. Antioxidants (Basel) 2022; 11:antiox11091826. [PMID: 36139900 PMCID: PMC9495356 DOI: 10.3390/antiox11091826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain manifested with allodynia and hyperalgesia usually becomes a chronic condition accompanied with mood disorders. Clinical therapies for neuropathic pain are still unsatisfactory with notable side effects. Recent studies have reported the protective role of molecular hydrogen (H2) in different diseases including neurological disorders, such as Alzheimer's as well as its antidepressant activities in animals with chronic stress. This study explored the effects of treatment with hydrogen-rich water (HRW) in male mice with neuropathic pain induced by the chronic constriction of the sciatic nerve (CCI) and the accompanying affective deficits. The likely pathways implied in the HRW analgesic activity, as well as the interaction between heme oxygenase 1 (HO-1) enzyme and H2 during neuropathic pain were also studied. The results showed: (i) the inhibitory effects of the repetitive treatment with HRW on the allodynia and hyperalgesia provoked by CCI; (ii) the anxiolytic and antidepressant actions of HRW in animals with neuropathic pain; (iii) the contribution of the antioxidant enzymes (HO-1 and NAD(P)H: quinone oxidoreductase 1) and the ATP sensitive potassium channels in the painkiller activities of HRW during neuropathic pain; (iv) a positive interaction between the HO-1 and H2 systems in inhibiting the CCI-induced neuropathy; and (v) the antioxidant, antinociceptive, anti-inflammatory and/or antiapoptotic features of HRW treatment in the dorsal root ganglia and/or amygdala of sciatic nerve-injured mice. This study demonstrates new protective actions of H2 and suggests that treatment with HRW might be an interesting therapeutic strategy for chronic neuropathic pain and its associated mood disorders.
Collapse
Affiliation(s)
- Maria Martínez-Serrat
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Santiago Coral-Pérez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
11
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
12
|
Ma LT, Bai Y, Cao P, Ren KX, Chen J, Zhang T, Fan BY, Qiao Y, Yan HY, Wang JJ, Li YQ, Zheng J. The analgesic effects of β-elemene in rats with neuropathic pain by inhibition of spinal astrocytic ERK activation. Mol Pain 2022; 18:17448069221121562. [PMID: 35976914 PMCID: PMC9393702 DOI: 10.1177/17448069221121562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuropathic pain takes a heavy toll on individual well-being, while current therapy is far from desirable. Herein, we assessed the analgesic effect of β-elemene, a chief component in the traditional Chinese medicine Curcuma wenyujin, and explored the underlying mechanisms at the level of spinal dorsal horn (SDH) under neuropathic pain. A spared nerve injury (SNI)-induced neuropathic pain model was established in rats. Intraperitoneal injection (i.p.) of β-elemene was administered for 21 consecutive days. Mechanical allodynia was explored by von Frey filaments. The activation of the mitogen-activated protein kinase (MAPK) family (including ERK, p38, and JNK) in spinal neurons, astrocytes, and microglia was evaluated using immunostaining 29 days after SNI surgery. The expression of GFAP, Iba-1, p-ERK, p-JNK, and p-p38 within the SDH was measured using immunoblotting. The levels of proinflammatory cytokines (including TNF-α, IL-1β, and IL-6) were measured with ELISA. The levels of oxidative stress indicators (including MDA, SOD, and GSH-PX) were detected using biochemical tests. Consecutive i.p. administration of β-elemene relieved SNI-induced mechanical allodynia (with an EC50 of 16.40 mg/kg). SNI significantly increased the expression of p-ERK in spinal astrocytes but not microglia on day 29. β-elemene reversed spinal astrocytic ERK activation and subsequent upregulation of proinflammatory cytokines in SNI rats, with no effect on the expression of p38 and JNK in spinal glia. β-elemene also exerted antioxidative effects by increasing the levels of SOD and GSH-PX and decreasing the level of MDA. Our results suggest that SNI induces robust astrocytic ERK activation within the SDH in the late phase of neuropathic pain. β-elemene exerts remarkable analgesic effects on neuropathic pain, possibly by inhibiting spinal astrocytic ERK activation and subsequent neuroinflammatory processes. Our findings suggest that β-elemene might be a promising analgesic for the treatment of chronic pain.
Collapse
Affiliation(s)
- Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China.,Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Peng Cao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Kai-Xi Ren
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi'an, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi'an, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Yu Qiao
- Laser Medical Center, Hainan Hospital, PLA General Hospital, Sanya, China
| | - Hong-Yu Yan
- 36674The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing-Jie Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology, Preclinical School of Medicine, Air Force Medical University, Xi'an, China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Department of Anatomy, College of Basic Medicine, Dali University, Dali, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
13
|
Effects of heme oxygenase 1 in the molecular changes and neuropathy associated with type 2 diabetes in mice. Biochem Pharmacol 2022; 199:114987. [PMID: 35276215 DOI: 10.1016/j.bcp.2022.114987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022]
Abstract
Painful diabetic neuropathy is one of the most common complications of diabetes in humans. The current treatments are not completely effective, and the main mechanisms implicated in the development of diabetic neuropathy are not completely elucidated. Thus, in male db/db mice, a murine model of type 2 diabetes, we investigated the effects of treatment with a heme oxygenase 1 (HO-1) inducer, cobalt protoporphyrin IX (CoPP), on the 1) hyperglycemia and mechanical allodynia associated with type 2 diabetes and 2) molecular changes induced by diabetic neuropathy in the central nervous system (CNS). Thus, we evaluated the effects of CoPP on the protein levels of 4-HNE (oxidative stress), Nrf2, superoxide dismutase 1 (SOD1), NAD(P)H quinone oxidoreductase 1 (NQO1), HO-1, glutathione S-transferase Mu 1 (GSTM1) (antioxidant enzymes), phosphatidylinositol 3-kinase/protein kinase B (nociceptive pathway), CD11b/c (microglial activation), and BAX (apoptosis) in the amygdala and spinal cord of db/db mice. Our results showed the antihyperglycemic and antiallodynic effects of CoPP treatment as well as the potent antioxidant, antinociceptive, anti-inflammatory, and antiapoptotic properties of this HO-1 inducer in the CNS of type 2 diabetic mice. Treatment with CoPP also prevented the downregulation of several antioxidant proteins (Nrf2, SOD-1, and NQO1) and/or enhanced the protein levels of HO-1 and GSTM1 in the spinal cord and/or amygdala of db/db mice. These effects might be implicated in the antiallodynic actions of CoPP. Our findings revealed the modulatory effects of CoPP in the CNS of db/db mice and provide new prospects for novel type 2 diabetes-associated neuropathy therapies.
Collapse
|
14
|
Basu P, Averitt DL, Maier C, Basu A. The Effects of Nuclear Factor Erythroid 2 (NFE2)-Related Factor 2 (Nrf2) Activation in Preclinical Models of Peripheral Neuropathic Pain. Antioxidants (Basel) 2022; 11:430. [PMID: 35204312 PMCID: PMC8869199 DOI: 10.3390/antiox11020430] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress, resulting from an imbalance between the formation of damaging free radicals and availability of protective antioxidants, can contribute to peripheral neuropathic pain conditions. Reactive oxygen and nitrogen species, as well as products of the mitochondrial metabolism such as superoxide anions, hydrogen peroxide, and hydroxyl radicals, are common free radicals. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) is a transcription factor encoded by the NFE2L2 gene and is a member of the cap 'n' collar subfamily of basic region leucine zipper transcription factors. Under normal physiological conditions, Nrf2 remains bound to Kelch-like ECH-associated protein 1 in the cytoplasm that ultimately leads to proteasomal degradation. During peripheral neuropathy, Nrf2 can translocate to the nucleus, where it heterodimerizes with muscle aponeurosis fibromatosis proteins and binds to antioxidant response elements (AREs). It is becoming increasingly clear that the Nrf2 interaction with ARE leads to the transcription of several antioxidative enzymes that can ameliorate neuropathy and neuropathic pain in rodent models. Current evidence indicates that the antinociceptive effects of Nrf2 occur via reducing oxidative stress, neuroinflammation, and mitochondrial dysfunction. Here, we will summarize the preclinical evidence supporting the role of Nrf2 signaling pathways and Nrf2 inducers in alleviating peripheral neuropathic pain.
Collapse
Affiliation(s)
- Paramita Basu
- Pittsburgh Center for Pain Research and The Pittsburgh Project to End Opioid Misuse, Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dayna L. Averitt
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA; (D.L.A.); (C.M.)
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA; (D.L.A.); (C.M.)
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
15
|
The Beneficial Effects of Heme Oxygenase 1 and Hydrogen Sulfide Activation in the Management of Neuropathic Pain, Anxiety- and Depressive-like Effects of Paclitaxel in Mice. Antioxidants (Basel) 2022; 11:antiox11010122. [PMID: 35052626 PMCID: PMC8773208 DOI: 10.3390/antiox11010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy constitutes an unresolved clinical problem that severely decreases the quality of the patient’s life. It is characterized by somatosensory alterations, including chronic pain, and a high risk of suffering mental disorders such as depression and anxiety. Unfortunately, an effective treatment for this neuropathology is yet to be found. We investigated the therapeutic potential of cobalt protoporphyrin IX (CoPP), a heme oxygenase 1 inducer, and morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex (GYY4137), a slow hydrogen sulfide (H2S) donor, in a preclinical model of paclitaxel (PTX)-induced peripheral neuropathy (PIPN) in mice. At three weeks after PTX injection, we evaluated the effects of the repetitive administration of 5 mg/kg of CoPP and 35 mg/kg of GYY4137 on PTX-induced nociceptive symptoms (mechanical and cold allodynia) and on the associated emotional disturbances (anxiety- and depressive-like behaviors). We also studied the mechanisms that could mediate their therapeutic properties by evaluating the expression of key proteins implicated in the development of nociception, oxidative stress, microglial activation, and apoptosis in prefrontal cortex (PFC) and dorsal root ganglia (DRG) of mice with PIPN. Results demonstrate that CoPP and GYY4137 treatments inhibited both the nociceptive symptomatology and the derived emotional alterations. These actions were mainly mediated through potentiation of antioxidant responses and inhibiting oxidative stress in the DRG and/or PFC of mice with PIPN. Both treatments normalized some plasticity changes and apoptotic reactions, and GYY4137 blocked microglial activation induced by PTX in PFC. In conclusion, this study proposes CoPP and GYY4137 as good candidates for treating neuropathic pain, anxiety- and depressive-like effects of PTX.
Collapse
|
16
|
Derangula K, Javalgekar M, Kumar Arruri V, Gundu C, Kumar Kalvala A, Kumar A. Probucol attenuates NF-κB/NLRP3 signalling and augments Nrf-2 mediated antioxidant defence in nerve injury induced neuropathic pain. Int Immunopharmacol 2021; 102:108397. [PMID: 34891000 DOI: 10.1016/j.intimp.2021.108397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Neuroinflammation is one of the most significant pathological drivers following nerve injury which along with immune cell activation, oxidative stress and other associated molecular mechanisms contribute to development of neuropathic pain characterized by hyperalgesia and allodynia. In the current study we have investigated the pharmacological effect of probucol (prb) using chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain (NP) model in rats. CCI of sciatic nerve resulted in marked decrease in pain threshold along with perturbations in anti-oxidant defence, enhanced inflammatory mediators and abnormal foot posture. Administration of prb at the doses of 8 and 16 mg/kg, p.o. for 14 days significantly attenuated the behavioural, biochemical and functional deficits following CCI of sciatic nerve. To further explore the molecular mechanisms of prb, we assessed the post treatment levels of inflammatory and oxidative stress markers like NLRP3 inflammasome, NF-κB and associated proinflammatory molecules such as IL-1 β, TNF-α & IL-6 along with Nrf-2 and HO-1. Our findings demonstrated that CCI induced changes in levels of these markers were dose dependently reversed by administration of prb. Of note, at molecular level the elevated expression of transcription factors such as NF-κB which is crucial for Nlrp3 activation and diminished levels of Nrf-2 were manifested following CCI induction, these changes were markedly reversed with 14 days treatment of prb at both the doses. Our findings highlighted the dual pharmacological effect of prb, anti-inflammatory and anti-oxidant via modulation of NF-κB/NLRP3 signalling and Nrf-2 pathway in attenuation of CCI of sciatic nerve induced NP.
Collapse
Affiliation(s)
- Kalyani Derangula
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Mohit Javalgekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Vijay Kumar Arruri
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, FL, USA
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India; National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Chunnilal Bhavan, 168, Maniktala Main Road, Kolkata, West Bengal, India.
| |
Collapse
|
17
|
The Anxiolytic and Antidepressant Effects of Diallyl Disulfide and GYY4137 in Animals with Chronic Neuropathic Pain. Antioxidants (Basel) 2021; 10:antiox10071074. [PMID: 34356307 PMCID: PMC8301074 DOI: 10.3390/antiox10071074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
When neuropathic pain is maintained long term, it can also lead to the development of emotional disorders that are even more intense than pain perception and difficult to treat. Hydrogen sulfide (H2S) donors relieve chronic pain, but their effects on the associated mood disorders are not completely elucidated. We evaluated if treatment with DADS (diallyl disulfide) or GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex), two slow-releasing H2S donors, inhibits the anxiety- and depressive-like behaviors that concur with chronic neuropathic pain generated by sciatic nerve injury in mice. The modulatory role of these drugs in the inflammatory, apoptotic, and oxidative processes implicated in the development of the affective disorders was assessed. Our results revealed the anxiolytic, antidepressant, and antinociceptive properties of DADS and GYY4137 during neuropathic pain by inhibiting microglial activation and the up-regulation of phosphoinositide 3-kinase/phosphorylated protein kinase B and BAX in the amygdala (AMG) and/or periaqueductal gray matter (PAG). Both treatments also normalized and/or activated the endogenous antioxidant system, but only DADS blocked ERK 1/2 phosphorylation. Both H2S donors decreased allodynia and hyperalgesia in a dose-dependent manner by activating the Kv7 potassium channels and heme oxygenase 1 signaling pathways. This study provides evidence of the anxiolytic and antidepressant properties of DADS and GYY4137 during neuropathic pain and reveals their analgesic actions, suggesting that these therapeutic properties may result from the inhibition of the inflammatory, apoptotic, and oxidative responses in the AMG and/or PAG. These findings support the use of these treatments for the management of affective disorders accompanying chronic neuropathic pain.
Collapse
|
18
|
Ferreira-Chamorro P, Redondo A, Riego G, Pol O. Treatment with 5-fluoro-2-oxindole Increases the Antinociceptive Effects of Morphine and Inhibits Neuropathic Pain. Cell Mol Neurobiol 2021; 41:995-1008. [PMID: 32880099 DOI: 10.1007/s10571-020-00952-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
The efficacy of µ-opioid receptors (MOR) in neuropathic pain is low and with numerous side effects that limited their use. Chronic neuropathic pain is also linked with emotional disorders that aggravate the sensation of pain and which treatment has not been resolved. This study investigates whether the administration of an oxindole, 5-fluoro-2-oxindole, could inhibit the nociceptive and emotional behaviors and increase the effectiveness of morphine via modulating the microglia and activating the nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway and MOR expression. In C57BL/6 mice with neuropathic pain provoked by the total constriction of sciatic nerve we studied the effects of 10 mg/kg 5-fluoro-2-oxindole in: (i) the allodynia and hyperalgesia caused by the injury; (ii) the anxiety- and depressive-like behaviors; (iii) the local antinociceptive actions of morphine; (iv) the expression of CD11b/c (a microglial marker), the antioxidant and detoxificant enzymes Nrf2, heme oxygenase 1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO1), and of MOR in the spinal cord and hippocampus. Results showed that the inhibition of the main nociceptive symptoms and the anxiety- and depressive-like behaviors induced by 5-fluoro-2-oxindole were accompanied with the suppression of microglial activation and the activation of Nrf2/HO-1/NQO1 signaling pathway in the spinal cord and/or hippocampus. This treatment also potentiated the pain-relieving activities of morphine by normalizing the reduced MOR expression. This work demonstrates the antinociceptive, anxiolytic and antidepressant effects of 5-fluoro-2-oxindole, suggests a new strategy to enhance the antinociceptive actions of morphine and proposes a new mechanism of action of oxindoles during chronic neuropathic pain.
Collapse
Affiliation(s)
- Pablo Ferreira-Chamorro
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau, 08041, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau, 08041, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau, 08041, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau, 08041, Barcelona, Spain.
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
- Grup de Neurofarmacologia Molecular, Institut D'Investigació Biomèdica Sant Pau & Institut de Neurociències, Facultat de Medicina. Edifici M2, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
19
|
Zhang Y, Ma B, Hao S, Wang J, Zhang R, Ishfaq M, Shi C, Yuan L, Li R, Li C, Liu F. Drug-induced liver injury: Oltipraz and C2-ceramide intervene HNF-1α/GSTA1 expression via JNK signaling pathway. J Appl Toxicol 2021; 41:2011-2020. [PMID: 33959992 DOI: 10.1002/jat.4181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Drug-induced liver injury (DILI) is a serious and frequently occurring issue in drug development. The c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in many diseases; hepatocyte nuclear factor-1α (HNF-1α) and glutathione S-transferase A1 (GSTA1) are important in regulating liver-specific genes expressions and affecting drug metabolism. Oltipraz is used to treat liver cirrhosis by improving liver function, and C2-ceramide is a pro-apoptotic lipid that regulates multiple signaling pathways. In this study, we investigated the function of the JNK signaling pathway with HNF-1α and GSTA1 in a cellular model of DILI and whether oltipraz and C2-ceramide exert effects via the JNK pathway. The results showed that inhibiting JNK could ameliorate APAP-induced hepatocyte injury, reduced oxidative stress, suppressed JNK and c-Jun activation, and hepatocyte apoptosis. Meanwhile, the mRNA and protein expressions of HNF-1α and GSTA1 were increased significantly compared to control conditions. The effect of oltipraz (8 μmol/L) was similar to a JNK inhibitor and significantly increased HNF-1α/GSTA1 expression, but oltipraz combined with JNK inhibitor did not show a synergistic effect. Although C2-ceramide (8 μmol/L) aggravated hepatocyte injury and apoptosis, exacerbated oxidative stress, increased phosphorylation of JNK and c-Jun, and markedly decreased HNF-1α/GSTA1 expression, C2-ceramide combined with JNK inhibitor could partially alleviate these alterations. These results demonstrated that the JNK signaling pathway with HNF-1α/GSTA1 are involved in the process of DILI. Inhibiting JNK up-regulated HNF-1α and GSTA1 expressions which could attenuate hepatocyte injury. Oltipraz and C2-ceramide might affect the expression of HNF-1α/GSTA1 though JNK signaling.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingke Ma
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuangshuang Hao
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiaqi Wang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ruichen Zhang
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Muhammad Ishfaq
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chenxi Shi
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liang Yuan
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Rui Li
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Changwen Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fangping Liu
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
20
|
Zhou YQ, Mei W, Tian XB, Tian YK, Liu DQ, Ye DW. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol Ther 2021; 225:107846. [PMID: 33819559 DOI: 10.1016/j.pharmthera.2021.107846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Chronic pain remains an enormous health problem affecting approximatively 30% of the world's population. Opioids as the first line analgesics often leads to undesirable side effects when used long term. Therefore, novel therapeutic targets are urgently needed to the development of more efficacious analgesics. Substantial evidence indicates that excessive reactive oxygen species (ROS) are extremely important to the development of chronic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidant defense. Emerging evidence suggests that Nrf2 and its downstream effectors are implicated in chronic inflammatory and neuropathic pain. Notably, controversial results have been reported regarding the expression of Nrf2 and its downstream targets in peripheral and central regions involved in pain transmission. However, our recent studies and results from other laboratories demonstrate that Nrf2 inducers exert potent analgesic effects in various murine models of chronic pain. In this review, we summarized and discussed the preclinical evidence demonstrating the therapeutic potential of Nrf2 inducers in chronic pain. These evidence indicates that Nrf2 activation are beneficial in chronic pain mostly by alleviating ROS-associated pathological processes. Overall, Nrf2-based therapy for chronic pain is an area with great promise, but more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Wei Ye
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Zhou F, Wang X, Han B, Tang X, Liu R, Ji Q, Zhou Z, Zhang L. Short-chain fatty acids contribute to neuropathic pain via regulating microglia activation and polarization. Mol Pain 2021; 17:1744806921996520. [PMID: 33626986 PMCID: PMC7925956 DOI: 10.1177/1744806921996520] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microglia activation and subsequent pro-inflammatory responses play a key role in the development of neuropathic pain. The process of microglia polarization towards pro-inflammatory phenotype often occurs during neuroinflammation. Recent studies have demonstrated an active role for the gut microbiota in promoting microglial full maturation and inflammatory capabilities via the production of Short-Chain Fatty Acids (SCFAs). However, it remains unclear whether SCFAs is involved in pro-inflammatory/anti-inflammatory phenotypes microglia polarization in the neuropathic pain. In the present study, chronic constriction injury (CCI) was used to induce neuropathic pain in mice, the mechanical withdrawal threshold, thermal hyperalgesia were accomplished. The levels of microglia markers including ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation 11b (CD11b), pro-inflammatory phenotype markers including CD68, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and anti-inflammatory phenotype markers including CD206, IL-4 in the hippocampus and spinal cord were determined on day 21 after CCI. The results showed that CCI produced mechanical allodynia and thermal hyperalgesia, and also increased the expressions of microglia markers (Iba1, CD11b) and pro-inflammatory phenotype markers (CD68, IL-1β, and TNF-α), but not anti-inflammatory phenotype marker (CD206, IL-4) in the hippocampus and spinal cord, accompanied by increased SCFAs in the gut. Notably, antibiotic administration reversed these abnormalities, and its effects was also bloked by SCFAs administration. In conclusion, data from our study suggest that CCI can lead to mechanical and thermal hyperalgesia, while SCFAs play a key role in the pathogenesis of neuropathic pain by regulating microglial activation and subsequent pro-inflammatory phenotype polarization. Antibiotic administration may be a new treatment for neuropathic pain by reducing the production of SCFAs and further inhibiting the process of microglia polarization.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xian Wang
- Department of Anesthesiology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Baoyu Han
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xiaohui Tang
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ru Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lidong Zhang
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Redondo A, Riego G, Pol O. The Antinociceptive, Antioxidant and Anti-Inflammatory Effects of 5-Fluoro-2-Oxindole during Inflammatory Pain. Antioxidants (Basel) 2020; 9:antiox9121249. [PMID: 33316895 PMCID: PMC7763029 DOI: 10.3390/antiox9121249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023] Open
Abstract
Recent studies demonstrate that 5-fluoro-2-oxindole inhibits neuropathic pain but the antinociceptive actions of this drug and its effects on the plasticity, oxidative and inflammatory changes induced by peripheral inflammation as well as on the effects and expression of µ-opioid receptors (MOR) have not been evaluated. In C57BL/6 male mice with inflammatory pain provoked by the subplantar administration of complete Freund’s adjuvant (CFA), we evaluated: (1) the antinociceptive actions of 5-fluoro-2-oxindole and its reversion with the HO-1 inhibitor, tin protoporphyrin IX (SnPP); (2) the effects of 5-fluoro-2-oxindole in the protein levels of mitogen-activated protein kinase (MAPK), Nrf2, NADPH quinone oxidoreductase1 (NQO1), heme oxygenase 1 (HO-1), oxidative stress marker (4-hydroxy-2-nonenal; 4-HNE), inducible nitric oxide synthase (NOS2), microglial markers (CD11b/c and IBA-1), and MOR in the spinal cord and/or paw of animals with inflammatory pain; (3) the antinociceptive effects of morphine in 5-fluoro-2-oxindole pre-treated animals. Treatment with 5 and 10 mg/kg of 5-fluoro-2-oxindole inhibited the allodynia and hyperalgesia induced by CFA in a different, time-dependent manner. These effects were reversed by SnPP. Treatment with 5-fluoro-2-oxindole increased the expression of NQO1, HO-1 and MOR and inhibited the CFA-induced upregulation of phosphorylated MAPK, 4-HNE, NOS2, CD11b/c and IBA-1 in spinal cords and/or paws. The local effects of morphine were improved with 5-fluoro-2-oxindole. This work reveals that 5-fluoro-2-oxindole inhibits the plasticity, oxidative and inflammatory responses provoked by peripheral inflammation and potentiates the antinociceptive effects of morphine. Thus, treatment with 5-fluoro-2-oxindole alone and/or combined with morphine are two remarkable new procedures for chronic inflammatory pain management.
Collapse
Affiliation(s)
- Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
23
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
24
|
Fonseca-Rodrigues D, Amorim D, Almeida A, Pinto-Ribeiro F. Emotional and cognitive impairments in the peripheral nerve chronic constriction injury model (CCI) of neuropathic pain: A systematic review. Behav Brain Res 2020; 399:113008. [PMID: 33171146 DOI: 10.1016/j.bbr.2020.113008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Emotional and cognitive impairments are common comorbidities of chronic neuropathic pain that significantly impact the quality of life of patients. While the nociceptive components of the peripheral nerve chronic constriction injury (CCI) animal model have been extensively analyzed, data related to the development of mood and cognitive disorders, and especially its impact on female rats remains fragmented. We systematically reviewed the literature analyzing the methods used to induce and evaluate the development of emotional- and cognitive-like impairments and sex-specific differences in the CCI model. DATABASES AND DATA TREATMENT We searched PubMed, Google Scholar and Web of Science from inception to September 30th, 2019, and a total of 44 papers were considered eligible for inclusion. We included animal studies assessing nociception, locomotion, anxious-like, depressive-like and cognitive behaviours after the CCI induction. RESULTS The overall quality of the studies was considered moderate to high. Overall, the induction of CCI leads to the development of emotional impairments, namely anxiety- and depressive-like behaviours, as well as cognitive impairments. With the majority of the studies using male subjects, the lack of evidence on female animals prevents the evaluation of sex-specific differences. CONCLUSIONS This review supports the development of an anxiodepressive-like phenotype, associated with cognitive impairments, in CCI-induced animals. These results support the use of this animal model for the study of the mechanisms underlying these comorbidities, as well as a screening tool for the development/repurposing of drugs that tackle both the neuropathy-induced nociceptive and emotional impairments, such as tricyclic antidepressants. Importantly, our review also highlights the need for studies performed in female rodents as these are almost non-existent.
Collapse
Affiliation(s)
- Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus of Gualtar, University of Minho, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
25
|
Zhang Z, Wang H, Wang Y, Luo Q, Yuan S, Yan F. Risk of Postoperative Hyperalgesia in Adult Patients with Preoperative Poor Sleep Quality Undergoing Open-heart Valve Surgery. J Pain Res 2020; 13:2553-2560. [PMID: 33116797 PMCID: PMC7568632 DOI: 10.2147/jpr.s272667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Studies have reported that preoperative poor sleep quality could decrease the pain threshold in patients undergoing noncardiac surgery. However, the risk of postoperative hyperalgesia (HA) in cardiac surgery patients with preoperative poor sleep quality remains unclear. Patients and Methods We retrospectively collected clinical data from patients undergoing open-heart valve surgery between May 1 and October 31, 2019, in Fuwai Hospital (Beijing). We assessed preoperative sleep quality and postoperative pain severity using the Pittsburgh sleep quality index (PSQI) and numerical pain rating scale (NPRS), respectively. A PSQI of six or greater was considered to indicate poor sleep quality, and a NPRS of four or greater was considered to indicate HA. Multivariable logistic regression analysis was used to study the risk of postoperative HA in patients with preoperative poor sleep quality. Results We divided 214 eligible patients into two groups based on postoperative HA; HA group: n=61 (28.5%) and nonHA group: n=153 (71.5%). Compared with nonHA patients, patients with postoperative HA showed a higher percentage of history of smoking, 17 (11.1%) vs 15 (24.6%) and alcohol abuse, 5 (3.3%) vs 6 (9.8%), higher intraoperative dose of sufentanil (median, 1.02 vs 1.12 μg/kg/h), and longer duration of ventilation with tracheal catheter (median, 760 vs 934 min). Preoperative poor sleep quality was associated independently with an increased risk of postoperative HA (adjusted odds ratio [AOR]: 2.66; 95%CI: 1.31–5.39, P=0.007). Stratification by history of smoking revealed a stronger risk of postoperative HA in nonsmoking patients with preoperative poor sleep quality (AOR: 3.40; 95%CI: 1.51–7.66, P=0.003). No risk was found in patients who had history of smoking (AOR: 0.83; 95%CI: 0.14–4.75, P=0.832). Conclusion Preoperative poor sleep quality is an independent risk factor for postoperative HA in adult patients undergoing open-heart valve surgery who had no history of smoking.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hongbai Wang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuefu Wang
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qipeng Luo
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Su Yuan
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fuxia Yan
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
26
|
Pol O. The role of carbon monoxide, heme oxygenase 1, and the Nrf2 transcription factor in the modulation of chronic pain and their interactions with opioids and cannabinoids. Med Res Rev 2020; 41:136-155. [PMID: 32820550 DOI: 10.1002/med.21726] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain and its associated comorbidities are difficult to treat, even when the most potent analgesic compounds are used. Thus, research on new strategies to effectively relieve nociceptive and/or emotional disorders accompanying chronic pain is essential. Several studies have demonstrated the anti-inflammatory and antinociceptive effects of different carbon monoxide-releasing molecules (CO-RMs), inducible heme oxygenase 1 (HO-1), and nuclear factor-2 erythroid factor-2 (Nrf2) transcription factor activators in several models of acute and chronic pain caused by inflammation, nerve injury or diabetes. More recently, the antidepressant and/or anxiolytic effects of several Nrf2 transcription factor inducers were demonstrated in a model of chronic neuropathic pain. These effects are mainly produced by inhibition of oxidative stress, inflammation, glial activation, mitogen-activated protein kinases and/or phosphoinositide 3-kinase/phospho-protein kinase B phosphorylation in the peripheral and/or central nervous system. Other studies also demonstrated that the analgesic effects of opioids and cannabinoids are improved when these drugs are coadministered with CO-RMs, HO-1 or Nrf2 activators in different preclinical pain models and that these improvements are generally mediated by upregulation or prevention of the downregulation of µ-opioid receptors, δ-opioid receptors and/or cannabinoid 2 receptors in the setting of chronic pain. We reviewed all these studies as well as studies on the mechanisms of action underlying the effects of CO-RMs, HO-1, and Nrf2 activators in chronic pain. In summary, activation of the Nrf2/HO-1/carbon monoxide signaling pathway alone and/or in combination with the administration of specific analgesics is a valid strategy for the treatment of chronic pain and some associated emotional disorders.
Collapse
Affiliation(s)
- Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
27
|
Cabarga L, Batallé G, Pol O. Treatment with slow-releasing hydrogen sulfide donors inhibits the nociceptive and depressive-like behaviours accompanying chronic neuropathic pain: Endogenous antioxidant system activation. J Psychopharmacol 2020; 34:737-749. [PMID: 32312156 DOI: 10.1177/0269881120913154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Therapies to treat chronic neuropathic pain and its associated comorbidities are limited. Recent studies demonstrated that the administration of slow-releasing hydrogen sulfide (H2S) donors inhibited chemotherapy-induced neuropathic pain. However, the antidepressant or anxiolytic effects of these compounds and their mechanisms of action during chronic neuropathic pain have not been evaluated. AIMS To determine whether the administration of two slow-releasing H2S donors, allyl isothiocyanate (A-ITC) and phenyl isothiocyanate (P-ITC), inhibits the nociceptive and emotional disorders associated with chronic neuropathic pain. METHODS In C57BL/6 male mice with neuropathic pain caused by the chronic constriction of the sciatic nerve, we assessed the effects of intraperitoneal administration of A-ITC and P-ITC in (a) the mechanical allodynia, thermal hyperalgesia and thermal allodynia induced by nerve ligation; (b) the anxiety- and depressive-like behaviours linked with neuropathic pain; (c) glial activation and mitogen-activated protein kinases phosphorylation, and (d) expression of the antioxidant enzymes, heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase1, and glutathione S-transferase mu-1 (GSTM1), and alpha-1 (GSTA1), in hippocampus and prefrontal cortex (PFC). RESULTS Both treatments inhibited the allodynia and hyperalgesia, depressive-like behaviours, astroglial activation, and the extracellular signal-regulated kinase 1/2 phosphorylation but were unable to abolish the anxiety-like behaviours accompanying neuropathic pain. A-ITC and P-ITC also augmented the expression of HO-1, GSTM1, and GSTA1 in the hippocampus and/or PFC. CONCLUSIONS The administration of slow-releasing H2S donors might be a promising treatment for the management of chronic neuropathic pain and some associated comorbidities via inhibiting the inflammatory and plasticity changes, and activating the endogenous antioxidant responses.
Collapse
Affiliation(s)
- Laura Cabarga
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Catalunya, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Catalunya, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain.,Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Catalunya, Spain
| |
Collapse
|
28
|
Oltipraz Prevents High Glucose-Induced Oxidative Stress and Apoptosis in RSC96 Cells through the Nrf2/NQO1 Signalling Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5939815. [PMID: 32685505 PMCID: PMC7333049 DOI: 10.1155/2020/5939815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/06/2020] [Indexed: 12/17/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). Schwann cell (SC) apoptosis contributes to the occurrence and development of DPN. Effective drugs to prevent SC apoptosis are required to relieve and reverse peripheral nerve injury caused by DM. Oltipraz [4-methyl-5-(2-pyrazinyl)-1,2-dithiole-3-thione], an agonist of nuclear factor erythroid derived-2-related factor 2 (Nrf2), exerts strong effect against oxidative stress in animal models or clinical patients in certain diseases, including heart failure, acute kidney injury, and liver injury. The aim of the present study was to determine the effectiveness of oltipraz in preventing SC apoptosis induced by high glucose levels. RSC96 cells pretreated with oltipraz were cultured in high-glucose medium (50 mM glucose) for 24 h, and cells cultured in medium containing 5 mM glucose were used as the control. Flow cytometry was used to evaluate the degree of apoptosis. A Cell Counting Kit-8 assay was used to assess cell viability. The mitochondrial membrane potential was assessed using JC-1 staining, and reactive oxygen species (ROS) generation was measured using 20,70-dichlorodihydrofluorescein diacetate staining. In addition, the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) levels were also evaluated using the corresponding kits. Flow cytometry was subsequently used to detect apoptosis, and western blotting was used to measure the expression levels of nuclear factor erythroid derived-2-related factor 2 and NADPH quinone oxidoreductase 1. The results showed that high glucose concentration increased oxidative stress and apoptosis in RSC96 cells. Oltipraz improved cell viability and reduced apoptosis of RSC96 cells in the high glucose environment. Additionally, oltipraz exhibited a significant antioxidative effect, as shown by the decrease in MDA levels, increased SOD levels, and reduced ROS generation in RSC96 cells. The results of the present study suggest that oltipraz exhibits potential as an effective drug for treatment with DPN.
Collapse
|
29
|
Kummer KK, Mitrić M, Kalpachidou T, Kress M. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain. Int J Mol Sci 2020; 21:E3440. [PMID: 32414089 PMCID: PMC7279227 DOI: 10.3390/ijms21103440] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic pain patients frequently develop and suffer from mental comorbidities such as depressive mood, impaired cognition, and other significant constraints of daily life, which can only insufficiently be overcome by medication. The emotional and cognitive components of pain are processed by the medial prefrontal cortex, which comprises the anterior cingulate cortex, the prelimbic, and the infralimbic cortex. All three subregions are significantly affected by chronic pain: magnetic resonance imaging has revealed gray matter loss in all these areas in chronic pain conditions. While the anterior cingulate cortex appears hyperactive, prelimbic, and infralimbic regions show reduced activity. The medial prefrontal cortex receives ascending, nociceptive input, but also exerts important top-down control of pain sensation: its projections are the main cortical input of the periaqueductal gray, which is part of the descending inhibitory pain control system at the spinal level. A multitude of neurotransmitter systems contributes to the fine-tuning of the local circuitry, of which cholinergic and GABAergic signaling are particularly emerging as relevant components of affective pain processing within the prefrontal cortex. Accordingly, factors such as distraction, positive mood, and anticipation of pain relief such as placebo can ameliorate pain by affecting mPFC function, making this cortical area a promising target region for medical as well as psychosocial interventions for pain therapy.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.K.K.); (M.M.); (T.K.)
| |
Collapse
|
30
|
Fellah F, Djenidi R, Chebout I. Protective Effect of Sphaerococcus coronopifolius Crude Extract in Combination with Bacillus Calmette-Guerin on Ligature-Induced Depression in Female Wistar Rats. Psychiatry Investig 2020; 17:130-139. [PMID: 32023676 PMCID: PMC7046999 DOI: 10.30773/pi.2019.0234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Immunomodulation is a therapeutic technique that modulates the balance of cytokines in the body. In this regard, our experiment was conducted to investigate the potential effect of S. coronopifolius crude extract in combination with low dose of Bacillus Calmette-Guerin (BCG) on depression-like behaviors in female Wistar rats. METHODS Sciatic nerve injury was employed to induce depression and intradermal injection of 0.02 mL of BCG per rat was administered to lead an activation of innate immune system. Daily intra-peritoneal injections of 25 mg algae extract kg-1 body weight were performed for 14 continuous days. Forced Swimming (FS) and Open Field (OF) tests were conducted to assess despairing and spontaneous behaviors. At the end of the experiment, brain was removed to determine the activities of catalase (CAT) and glutathione-S-transferase (GST), whereas spleen and adrenals were used for the histopathological study. RESULTS The combined treatment exhibited antidepressant-like activity in FST by reducing immobility time, without inducing any significant change in ambulatory behavior in OFT. The histological analyses of spleen and adrenal structure showed a conserved architecture. CONCLUSION The results suggested that algae extract produce an antidepressant-like effect in combination with low dose of BCG, which is possibly trigged by its anti-oxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Fahima Fellah
- Département des Sciences Biologiques, Faculté SNV-STU, Université de Bordj Bou Arreridj, Bordj Bou Arreridj, Algérie.,Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie
| | - Rédha Djenidi
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algérie.,Département des Sciences Agronomiques, Faculté SNV-STU, Université de Bordj Bou Arreridj, Bordj Bou Arreridj, Algérie
| | - Imen Chebout
- Laboratoire de l'anatomie et de Cytopathologie, Faculté de Médecine, Université de Bejaia, Bejaia, Algérie
| |
Collapse
|
31
|
Ungerer G, Cui J, Ndam T, Bekemeier M, Song H, Li R, Siedhoff HR, Yang B, Appenteng MK, Greenlief CM, Miller DK, Sun GY, Folk WR, Gu Z. Harpagophytum procumbens Extract Ameliorates Allodynia and Modulates Oxidative and Antioxidant Stress Pathways in a Rat Model of Spinal Cord Injury. Neuromolecular Med 2020; 22:278-292. [PMID: 31900786 DOI: 10.1007/s12017-019-08585-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a deliberating disorder with impairments in locomotor deficits and incapacitating sensory abnormalities. Harpagophytum procumbens (Hp) is a botanical widely used for treating inflammation and pain related to various inflammatory and musculoskeletal conditions. Using a modified rodent contusion model of SCI, we explored the effects of this botanical on locomotor function and responses to mechanical stimuli, and examined possible neurochemical changes associated with SCI-induced allodynia. Following spinal cord contusion at T10 level, Hp (300 mg/kg, p.o.) or vehicle (water) was administered daily starting 24 h post-surgery, and behavioral measurements made every-other day until sacrifice (Day 21). Hp treatment markedly ameliorated the contusion-induced decrease in locomotor function and increased sensitivity to mechanical stimuli. Determination of Iba1 expression in spinal cord tissues indicated microglial infiltration starting 3 days post-injury. SCI results in increased levels of 4-hydroxynonenal, an oxidative stress product and proalgesic, which was diminished at 7 days by treatment with Hp. SCI also enhanced antioxidant heme oxygenase-1 (HO-1) expression. Concurrent studies of cultured murine BV-2 microglial cells revealed that Hp suppressed oxidative/nitrosative stress and inflammatory responses, including production of nitric oxide and reactive oxygen species, phosphorylation of cytosolic phospholipases A2, and upregulation of the antioxidative stress pathway involving the nuclear factor erythroid 2-related factor 2 and HO-1. These results support the use of Hp for management of allodynia by providing resilience against the neuroinflammation and pain associated with SCI and other neuropathological conditions.
Collapse
Affiliation(s)
- Garrett Ungerer
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Tina Ndam
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mikeala Bekemeier
- Department of Psychological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Runting Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Bo Yang
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael K Appenteng
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - C Michael Greenlief
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis K Miller
- Department of Psychological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grace Y Sun
- Biochemistry Department, School of Medicine and College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - William R Folk
- Biochemistry Department, School of Medicine and College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
32
|
Batallé G, Cabarga L, Pol O. The Inhibitory Effects of Slow-Releasing Hydrogen Sulfide Donors in the Mechanical Allodynia, Grip Strength Deficits, and Depressive-Like Behaviors Associated with Chronic Osteoarthritis Pain. Antioxidants (Basel) 2019; 9:antiox9010031. [PMID: 31905764 PMCID: PMC7023382 DOI: 10.3390/antiox9010031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis and its associated comorbidities are important clinical problems that have a negative impact on the quality of life, and its treatment remains unresolved. We investigated whether the systemic administration of slow-releasing hydrogen sulfide (H2S) donors, allyl isothiocyanate (A-ITC) and phenyl isothiocyanate (P-ITC), alleviates chronic osteoarthritis pain and the associated emotional disorders. In C57BL/6 female mice with osteoarthritis pain induced by the intra-articular injection of monosodium iodoacetate, we evaluated the effects of repeated administration of A-ITC and P-ITC on the (i) mechanical allodynia and grip strength deficits; (ii) emotional conducts; and (iii) glial activity and expression of inducible nitric oxide synthase (NOS2), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and antioxidant enzymes (heme oxygenase 1, NAD(P)H:quinone oxidoreductase-1, glutathione S-transferase mu 1 and alpha 1) in the hippocampus. The administration of A-ITC and P-ITC inhibited the mechanical allodynia, the grip strength deficits, and the depressive-like behaviors accompanying osteoarthritis. Both treatments inhibited microglial activation, normalized the upregulation of NOS2 and PI3K/p-Akt, and maintained high levels of antioxidant/detoxificant enzymes in the hippocampus. Data suggest that treatment with low doses of slow-releasing H2S donors might be an interesting strategy for the treatment of nociception, functional disability, and emotional disorders associated with osteoarthritis pain.
Collapse
Affiliation(s)
- Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Laura Cabarga
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|