1
|
Hassan TH, Ayappali Kalluvalappil N. Allergic reaction of poly-ether-ether-ketone versus titanium implants: A posttest-only control group design experimental study using a rabbit model. Clin Implant Dent Relat Res 2024; 26:671-678. [PMID: 38573022 DOI: 10.1111/cid.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 02/18/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE The aim of this study was to determine clinically and genetically the allergic effects of titanium and poly-ether-ether-ketone (PEEK) implants following loading in rabbit tibias. MATERIALS AND METHODS This study included 18 white New Zealand male rabbits (n = 18) divided evenly into three groups: control, titanium (Ti), and PEEK (P). Clinically, the allergenic effect of titanium and PEEK was investigated by detecting the effect on lymph nodes. Furthermore, RT-PCR and ELISA were used to detect the expression of certain genes IL-6, TNF-α, OPG, RANKL, and RUNX-2 through both types of implants. RESULTS Our findings demonstrated that titanium implants induced enlarged lymph nodes, which PEEK did not. Overall, RT-PCR and ELISA techniques revealed that Ti implants had higher expression of the inflammatory genes IL-6 and TNF-α. Ti had the highest expression in OPG findings, while PEEK had the lowest. RANKL expression was highest in the control group and lowest in the PEEK group. RUNX-2 is the highest for the control group and the lowest for the titanium group. CONCLUSION Although titanium implants elicited greater allergy responses than PEEK implants, titanium has the highest expression of bone formation genes and the lowest expression of bone resorption genes, making it preferable to PEEK.
Collapse
Affiliation(s)
- Tamer Hamed Hassan
- College of Dentistry, University of Science and Technology of Fujairah, UAE
| | | |
Collapse
|
2
|
Han J, Leeuwenburgh SCG, Jansen JA, Yang F, van Oirschot BAJA. Biological Processes in Gingival Tissue Integration Around Dental Implants. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38526353 DOI: 10.1089/ten.teb.2023.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Affiliation(s)
- Jing Han
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Bart A J A van Oirschot
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Albrektsson T, Tengvall P, Amengual L, Coli P, Kotsakis GA, Cochran D. Osteoimmune regulation underlies oral implant osseointegration and its perturbation. Front Immunol 2023; 13:1056914. [PMID: 36761175 PMCID: PMC9902598 DOI: 10.3389/fimmu.2022.1056914] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
In the field of biomaterials, an endosseous implant is now recognized as an osteoimmunomodulatory but not bioinert biomaterial. Scientific advances in bone cell biology and in immunology have revealed a close relationship between the bone and immune systems resulting in a field of science called osteoimmunology. These discoveries have allowed for a novel interpretation of osseointegration as representing an osteoimmune reaction rather than a classic bone healing response, in which the activation state of macrophages ((M1-M2 polarization) appears to play a critical role. Through this viewpoint, the immune system is responsible for isolating the implant biomaterial foreign body by forming bone around the oral implant effectively shielding off the implant from the host bone system, i.e. osseointegration becomes a continuous and dynamic host defense reaction. At the same time, this has led to the proposal of a new model of osseointegration, the foreign body equilibrium (FBE). In addition, as an oral wound, the soft tissues are involved with all their innate immune characteristics. When implant integration is viewed as an osteoimmune reaction, this has implications for how marginal bone is regulated. For example, while bacteria are constitutive components of the soft tissue sulcus, if the inflammatory front and immune reaction is at some distance from the marginal bone, an equilibrium is established. If however, this inflammation approaches the marginal bone, an immune osteoclastic reaction occurs and marginal bone is removed. A number of clinical scenarios can be envisioned whereby the osteoimmune equilibrium is disturbed and marginal bone loss occurs, such as complications of aseptic nature and the synergistic activation of pro-inflammatory pathways (implant/wear debris, DAMPs, and PAMPs). Understanding that an implant is a foreign body and that the host reacts osteoimmunologically to shield off the implant allows for a distinction to be drawn between osteoimmunological conditions and peri-implant bone loss. This review will examine dental implant placement as an osteoimmune reaction and its implications for marginal bone loss.
Collapse
Affiliation(s)
- T. Albrektsson
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden
| | - P. Tengvall
- Department of Biomaterials, University of Gothenburg, Gothenburg, Sweden,*Correspondence: P. Tengvall,
| | - L. Amengual
- Dental Implantology Unit, Hospital Leonardo Guzmán, Antofagasta, Chile
| | - P. Coli
- Edinburgh Dental Specialists, Edinburgh, United Kingdom,Department of Prosthetic Dentistry and Dental Material Science, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden,Department of Dental Material Science, The Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - G. A. Kotsakis
- Department of Periodontology, University of Texas, San Antonio, TX, United States
| | - D. Cochran
- Department of Periodontology, University of Texas, San Antonio, TX, United States
| |
Collapse
|
4
|
Nagasawa MA, Formiga MDC, Moraschini V, Bertolini M, Souza JGS, Feres M, Figueiredo LC, Shibli JA. Do the progression of experimentally induced gingivitis and peri-implant mucositis present common features? A systematic review of clinical human studies. BIOFOULING 2022; 38:814-823. [PMID: 36250998 DOI: 10.1080/08927014.2022.2133603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
This systematic review evaluated the features of the progression of experimentally induced gingivitis and peri-implant mucositis in humans. Included were studies that evaluated clinical, immunological, or microbiological responses between experimentally induced gingivitis and peri-implant mucositis in periodontally healthy patients. A total of 887 articles were initially identified, but only 12 were included in the final analysis. Implants accumulate less biofilm and suffer the most heterogeneous alterations in the microbiota, in the abstinence of oral hygiene, compared with the tooth. Interestingly, although dental implants presented less biofilm accumulation, the peri-implant mucosa showed a more exacerbated clinical response than the gingival tissue. The risk of bias of the selected studies was moderate to low, with one study presenting serious risk. The progression events of peri-implant mucositis were similar to those of experimental gingivitis but led to a different host response. This review was registered in the PROSPERO database CRD420201 123360.
Collapse
Affiliation(s)
- Magda Aline Nagasawa
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
| | - Márcio de Carvalho Formiga
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
- Department of Periodontology and Oral Implantology, UNISUL, Florianópolis, Brazil
| | - Vittorio Moraschini
- Dental Research Division, Graduate Program at the Veiga de Almeida University, Rio de Janeiro, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - João Gabriel Silva Souza
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
- Dental Science School, Faculdade de Ciências Odontológicas, Montes Claros, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
| | - Luciene C Figueiredo
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
| | - Jamil Awad Shibli
- Department of Periodontology, Dental Research Division, University of Guarulhos (UnG), Sao Paulo, Brazil
| |
Collapse
|
5
|
Stavropoulos A, Bertl K, Winning L, Polyzois I. What is the influence of implant surface characteristics and/or implant material on the incidence and progression of peri-implantitis? A systematic literature review. Clin Oral Implants Res 2021; 32 Suppl 21:203-229. [PMID: 34642989 DOI: 10.1111/clr.13859] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 04/27/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVES To answer the focused question, 'In animals or patients with dental implants, does implant surface characteristics and/or implant material have an effect on incidence and progression of peri-implantitis?' MATERIAL AND METHODS Pre-clinical in vivo experiments on experimental peri-implantitis and clinical trials with any aim and design, and ≥5 years follow-up, where the effect of ≥2 different type of implant material and/or surface characteristics on peri-implantitis incidence or severity, and/or progression, implant survival or losses due to peri-implantitis, and/or marginal bone levels/loss was assessed. RESULTS Meta-analyses based on data of pre-clinical experiments, using the ligature induced peri-implantitis model in the dog, indicated that after the spontaneous progression phase implants with a modified surface showed significantly greater radiographic bone loss (effect size 0.44 mm; 95%CI 0.10-0.79; p = .012; 8 publications) and area of infiltrated connective tissue (effect size 0.75 mm2 ; 95%CI 0.15-1.34; p = .014; 5 publications) compared to non-modified surfaces. However, in 9 out of the 18 included experiments, reported in 25 publications, no significant differences were shown among the different implant surface types assessed. Clinical and/or radiographic data from 7605 patients with 26,188 implants, reported in 31 publications (20 RCTs, 3 CTs, 4 prospective cohort, and 4 retrospective studies; 12 with follow-up ≥10 years), overall did not show significant differences in the incidence of peri-implantitis, when this was reported or could be inferred, among the various implant surfaces. In general, high survival rates (90-100%) up to 30 years and no clinically relevant differences in marginal bone loss/levels, merely compatible with crestal remodelling, were presented for the various implant types. CONCLUSION Pre-clinical in vivo experiments indicate that surface characteristics of modified implants may have a significant negative impact on peri-implantitis progression, while clinical studies do not support the notion that there is a difference in peri-implantitis incidence among the various types of implant surfaces. No assumptions can be made regarding the possible impact of implant material on incidence and/or peri-implantitis progression due to limited information.
Collapse
Affiliation(s)
- Andreas Stavropoulos
- Division of Regenerative Dental Medicine and Periodontology, University Clinics of Dental Medicine (CUMD), University of Geneva, Geneva, Switzerland.,Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden
| | - Kristina Bertl
- Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden.,Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Lewis Winning
- Department of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College, Dublin, Ireland
| | - Ioannis Polyzois
- Department of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College, Dublin, Ireland
| |
Collapse
|
6
|
Coli P, Jemt T. Are marginal bone level changes around dental implants due to infection? Clin Implant Dent Relat Res 2021; 23:170-177. [PMID: 33463079 DOI: 10.1111/cid.12971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peri-implant bone level values have been used as the clinical standard of reference to describe the status of a dental implant. Reduction of marginal bone levels in association with bleeding on probing have been claimed to be a sign of pathology and an indication of treatment needs. PURPOSE To assess the available evidence that peri-implant bone loss is caused by infection. MATERIALS AND METHODS This article is a narrative review on the interpretation of marginal bone level changes around dental implants as a consequence of infection. RESULTS AND CONCLUSIONS There is evidence that plaque accumulation induces an inflammatory reaction in the peri-implant soft tissues and that resumption of plaque control measures results in the reduction of the inflammation. Since plaque is always present in the oral cavity, a cause-effect relationship between plaque accumulation and peri-implantitis, defined as inflammation of the peri-implant soft tissues associated with marginal bone loss has been difficult to validate and has not been proven so far. There is no evidence of the mechanisms involved in the tissue reactions resulting in the conversion from a state of an inevitable inflammation contained in the soft tissues to a state of inflammation involving the loss of peri-implant marginal bone. There is today no consensus whether implants should be expected to be surrounded by tissues which are completely free from inflammation, or that an "immune-driven", chronic, subclinical inflammation should be expected at the foreign body implant. The infectious origin theory appears to be mainly supported by ligature-induced experimental peri-implantitis investigations in animal models that suffer of several methodological problems, and therefore, provide misleading information with regards to human clinical applications in large, routine populations.
Collapse
Affiliation(s)
- Pierluigi Coli
- Edinburgh Dental Specialists, Edinburgh, UK.,Department of Prosthetic Dentistry/Dental Material Science, The Sahlgrenska Academy at Göteborg University, Gothenburg, Sweden
| | - Torsten Jemt
- Brånemark Clinic, Public Dental Health Care Service, Gothenburg, Västra Götaland, Sweden
| |
Collapse
|
7
|
Huang H, Chen D, Lippuner K, Hunziker EB. Induced Experimental Periimplantitis and Periodontitis: What are the Differences in the Inflammatory Response ? J ORAL IMPLANTOL 2020; 47:359-369. [PMID: 33259586 DOI: 10.1563/aaid-joi-d-19-00362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This preliminary study investigates the differences between experimental periodontitis and periimplantitis in a dog model, with a focus on the histopathology, the inflammatory responses and specific immunoregulatory activities, driven by Th1/Th2 positive cells. Twelve dental implants were inserted into the edentulated posterior mandibles of six Beagle dogs and were given twelve weeks time for osseointegration. Experimental periimplantitis and periodontitis (first mandible molar) was then induced using cotton-floss ligatures. Twelve weeks later, alveolar bones were quantitated by cone beam-computer tomography. Histopathological analysis of the inflamed gingiva and of the periodontal tissues was performed by light microscopy, and the Th1/ Th2 cell populations were investigated by flow cytometry. Periimplantitis as well as periodontitis were both found to be associated with pronounced bone resorption effects, both to a similar degree vertically, but with a differential bone resorption pattern mesio-distally, and with a significantly higher and consistent bone resorption result in periimplantitis; however, with a higher variance of bone resorption in periodontitis. The histological appearances of the inflammatory tissues were identical. The percentages of Th1/ Th2 cells in the inflamed gingival tissues of both experimental periimplantitis and periodontitis were also found to be similar. Experimental periodontitis and periimplantitis in the dog model show essentially the same cellular pathology of inflammation. However, bone resorption was found to be significantly higher in periimplantitis; the histopathological changes in the periodontal tissues were similar in both groups, but showed a higher inter-individual variation in periodontitis, and appeared more uniform in periimplantitis. This preliminary study indicates that more focused experimental in-vivo inflammation models need to be developed to better simulate the human pathology in the two different diseases, and in order to have a valuable tool to investigate more specifically how novel treatments/prevention approaches may heal the differential adverse effects on bone tissue and on periodontium in periodontitis and in periimplantitis.
Collapse
Affiliation(s)
- Hairong Huang
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije University Amsterdam, Gustav Mahlerlaan 3004, 1081LA Amsterdam, Nord-Holland, the Netherlands
| | - Dong Chen
- State Key Laboratory of Basic Science of Stomatology, Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital Bern University Hospital, Freiburgstrasse 3, CH-3010 Bern, Switzerland
| | - Ernst Bruno Hunziker
- Inselspital Universitatsspital Bern Research Head Osteoporosis and Othopaedic Research Freiburgstrasse 3 SWITZERLAND Bern Bern 3010 +41860794446551 +41794446551 Departments of Osteoporosis and Orthopaedic Surgery, Inselspital Bern University Hospital, Freiburgstrasse 3, CH-3010 Bern, Switzerland
| |
Collapse
|
8
|
Albrektsson T. Are Oral Implants the Same As Teeth? J Clin Med 2019; 8:E1501. [PMID: 31546951 PMCID: PMC6781071 DOI: 10.3390/jcm8091501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/08/2023] Open
Abstract
Osseointegration of oral implants was initially discovered by Brånemark [...].
Collapse
Affiliation(s)
- Tomas Albrektsson
- Department of Biomaterials, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|