1
|
Liu C, Zhu X, Aga E, Tse WM, Tse KWG, Liu Y, Ye B. Ebeiedinone and peimisine inhibit cigarette smoke extract-induced oxidative stress injury and apoptosis in BEAS-2B cells. Cell Stress Chaperones 2024; 29:697-708. [PMID: 39370036 PMCID: PMC11526090 DOI: 10.1016/j.cstres.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024] Open
Abstract
Ebeiedinone and peimisine are the major active ingredients of Fritillariae Cirrhosae Bulbus. In this study, we looked at how these two forms of isosteroidal alkaloids protect human bronchial epithelial BEAS-2B cells from oxidative stress and apoptosis caused by cigarette smoke extract (CSE). First, the cytotoxicity was determined using the CCK8 assay, and an oxidative stress model was established. Then the antioxidative stress activity and mechanism were investigated by ELISA, flow cytometry, and Western blotting. By the CCK-8 assay, exposure to CSE (20%, 40%, and 100%) reduced the viability of BEAB-2S cells. The flow cytometry findings indicated that CSE-induced production of ROS (0.5% to maximum) and treatments with 10 μM ebeiedinone and 20 μM peimisine attenuated the production of ROS. The western blot assay results indicate that ebeiedinone and peimisine reduce CSE-induced oxidative stress, DNA damage, apoptosis, and autophagy dysregulation by inhibiting ROS, upregulating SOD and GSH/GSSG, and downregulating MDA, 4-HNE, and 8-OHdG through the NRF2/KEAP1 and JNK/MAPK-dependent pathways, thereby delaying the pathological progression of COPD caused by CS.Our data suggest that CSE causes oxidative stress, DNA damage, and apoptosis in BEAS-2B cells, as well as the progression of COPD. Ebeiedinone and peimisine fight CS-induced COPD by suppressing autophagy deregulation and apoptosis.
Collapse
Affiliation(s)
- Chuanlan Liu
- Medical College of Tibet University, Lasa 850002, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaomu Zhu
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Erbu Aga
- Medical College of Tibet University, Lasa 850002, China
| | - Wai Ming Tse
- Nin Jiom Medicine Manufactory (H.K.) Limited, Hong Kong, PR China
| | | | - Yanyong Liu
- Medical College of Tibet University, Lasa 850002, China; Institute of Basic Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Bengui Ye
- Medical College of Tibet University, Lasa 850002, China; Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Ibrahim AMA, Thabet MA, Ali AM. Physiological and developmental dysfunctions in the dengue vector Culex pipiens (Diptera: Culicidae) immature stages following treatment with zinc oxide nanoparticles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105395. [PMID: 37105619 DOI: 10.1016/j.pestbp.2023.105395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/19/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
The medical value of mosquitoes attracted researchers worldwide to search for a valuable way to control such serious insects. The continuous development of resistance against chemical insecticides pushed toward looking for novel and promising compounds against mosquitoes. In this study, the toxicity and physio-developmental effects of 10-30 nm spherical zinc oxide nanoparticles (ZnONPs) in aqueous suspension was addressed against the first larval instar of Culex pipiens mosquito. The calculated value of LC50 was about 0.892 g/L while the sub lethal concentration LC20 recorded about 0.246 g/L. Larvae treated with ZnONPs suffered reduced growth rate, longer developmental period and malformations in the breathing tube. Furthermore, the treated larvae showed clear abnormal appearance of the gastric caeca and midgut epithelia under transmission electron microscope (TEM). These abnormalities appeared as condensation of the nuclear chromatin, abnormal shape or absence of microvilli, highly increased amount of smooth endoplasmic reticulum in the cytoplasm and appearance of numerous vacuoles. Additionally, ZnONPs interfered with several biochemical pathways such as induction of oxidative stress which appeared in the form of increased levels of hydrogen peroxide and inability to activate the detoxifying enzymes alkaline phosphatase (ALP), catalase and glutathione peroxidase (GPX). On the contrary, the activity of the antioxidant enzyme superoxide dismutase (SOD) increased in treated larvae. Furthermore, LC20 and LC50 of ZnONPs inhibited the growth rate of the larval gut fauna in vitro. These results clearly show that ZnONPs target several tissues leading to serious alteration in the physiological and developmental processes in C. pipiens mosquito larvae.
Collapse
Affiliation(s)
- Ahmed M A Ibrahim
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| | - Marwa Adel Thabet
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ali M Ali
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
4
|
Wei Y, Giunta S, Xia S. Hypoxia in Aging and Aging-Related Diseases: Mechanism and Therapeutic Strategies. Int J Mol Sci 2022; 23:8165. [PMID: 35897741 PMCID: PMC9330578 DOI: 10.3390/ijms23158165] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/27/2023] Open
Abstract
As the global aging process continues to lengthen, aging-related diseases (e.g., chronic obstructive pulmonary disease (COPD), heart failure) continue to plague the elderly population. Aging is a complex biological process involving multiple tissues and organs and is involved in the development and progression of multiple aging-related diseases. At the same time, some of these aging-related diseases are often accompanied by hypoxia, chronic inflammation, oxidative stress, and the increased secretion of the senescence-associated secretory phenotype (SASP). Hypoxia seems to play an important role in the process of inflammation and aging, but is often neglected in advanced clinical research studies. Therefore, we have attempted to elucidate the role played by different degrees and types of hypoxia in aging and aging-related diseases and their possible pathways, and propose rational treatment options based on such mechanisms for reference.
Collapse
Affiliation(s)
- Yaqin Wei
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200000, China;
| | - Sergio Giunta
- Casa di Cura Prof. Nobili–GHC Garofalo Health Care, 40035 Bologna, Italy;
| | - Shijin Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200000, China;
| |
Collapse
|
5
|
Marín-Hinojosa C, Eraso CC, Sanchez-Lopez V, Hernández LC, Otero-Candelera R, Lopez-Campos JL. Nutriepigenomics and chronic obstructive pulmonary disease: potential role of dietary and epigenetics factors in disease development and management. Am J Clin Nutr 2021; 114:1894-1906. [PMID: 34477827 DOI: 10.1093/ajcn/nqab267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Over recent decades, a number of studies have revealed the possible role of different types of diets, as well as the nutritional elements they are made up of, in the pathogenesis of chronic obstructive pulmonary disease (COPD). To date, dietary factors have been identified to play a role in the prevention of COPD, with evidence from antioxidant nutrients, vitamins, and fiber intake. Additionally, certain dietary patterns such as the Mediterranean diet, together with other Western diets, provide evidence of the influence on COPD development, promoting lung health through nutritional approaches, and giving us an opportunity for intervention. The effect of diet on COPD is conveyed by 3 mechanisms: regulation of inflammation, oxidative stress, and carbon dioxide produced/oxygen intake. Current advances have begun to highlight the possible role of diet in modifying gene expression in certain individuals that predisposes them to COPD through epigenetic modifications. The relation between dietary intake and epigenetic factors has therefore outlined nutriepigenomics as a possible missing link in the relation between environmental exposure to smoke and the appearance of a subsequent chronic bronchial obstruction. This review summarizes the evidence regarding the influence of dietary patterns and nutrients and epigenetic regulatory mechanisms on COPD development and prevention with the aim of encouraging clinical research on the impact of dietary modifications on COPD-related clinical outcomes. This review highlights the importance of proposing and carrying out future studies focused on the modulating effects of certain nutrients on epigenetic changes in patients with specific COPD phenotypes (bronchiectasis, emphysema, asthma/COPD, chronic bronchitis), and their individual responses to cigarette smoking, environmental pollution, or other noxious particles. The objectives of these future studies must be directed to the development of novel therapeutic approaches and personalized management of COPD.
Collapse
Affiliation(s)
- Carmen Marín-Hinojosa
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Candelaria Caballero Eraso
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Veronica Sanchez-Lopez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Carrasco Hernández
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Remedios Otero-Candelera
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Zhang H, Guan R, Zhang Z, Li D, Xu J, Gong Y, Chen X, Lu W. LncRNA Nqo1-AS1 Attenuates Cigarette Smoke-Induced Oxidative Stress by Upregulating its Natural Antisense Transcript Nqo1. Front Pharmacol 2021; 12:729062. [PMID: 34566651 PMCID: PMC8456124 DOI: 10.3389/fphar.2021.729062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
Evidence of the involvement of long noncoding RNAs (lncRNAs) in the pathogenesis of chronic obstructive pulmonary disease (COPD) is growing but still largely unknown. This study aims to explore the expression, functions and molecular mechanisms of Fantom3_F830212L20, a lncRNA that transcribes in an antisense orientation to Nqo1.We name this lncRNA as Nqo1 antisense transcript 1 (Nqo1-AS1). The distribution, expression level and protein coding potential of Nqo1-AS1 were determined. The effects of Nqo1-AS1 on cigarette smoke (CS)-induced oxidative stress were also evaluated. The results showed that Nqo1-AS1 were mainly located in the cytoplasm of mouse alveolar epithelium and had a very low protein coding potential. Nqo1-AS1 (or its human homologue) was increased with the increase of CS exposure. Nqo1-AS1 overexpression enhanced the mRNA and protein levels of Nqo1 and Serpina1 mRNA expression, and attenuated CS-induced oxidative stress, whereas knockdown of Nqo1-AS1 significantly decreased Nqo1 and Serpina1 mRNA expressions, and aggravated CS-induced oxidative stress. Nqo1-AS1 increased Nqo1 mRNA stability and upregulated Nqo1 expression through antisense pairing with Nqo1 3′UTR. In conclusion, these results suggest that Nqo1-AS1 attenuates CS-induced oxidative stress by increasing Nqo1 mRNA stability and upregulating Nqo1 expression, which might serve as a novel approach for the treatment of COPD.
Collapse
Affiliation(s)
- Haiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hosptial, Southern Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zili Zhang
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuxin Gong
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hosptial, Southern Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Xue M, Zeng Y, Lin R, Qu HQ, Zhang T, Zhang XD, Liang Y, Zhen Y, Chen H, Huang Z, Hu H, Zheng P, Hakonarson H, Zhou L, Sun B. Metabolomic profiling of anaerobic and aerobic energy metabolic pathways in chronic obstructive pulmonary disease. Exp Biol Med (Maywood) 2021; 246:1586-1596. [PMID: 33957804 DOI: 10.1177/15353702211008808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While there is no cure for chronic obstructive pulmonary disease (COPD), its progressive nature and the formidable challenge to manage its symptoms warrant a more extensive study of the pathogenesis and related mechanisms. A new emphasis on COPD study is the change of energy metabolism. For the first time, this study investigated the anaerobic and aerobic energy metabolic pathways in COPD using the metabolomic approach. Metabolomic analysis was used to investigate energy metabolites in 140 COPD patients. The significance of energy metabolism in COPD was comprehensively explored by the Global Initiative for Chronic Obstructive Lung Disease-GOLD grading, acute exacerbation vs. stable phase (either clinical stability or four-week stable phase), age group, smoking index, lung function, and COPD Assessment Test (CAT) score. Through comprehensive evaluation, we found that COPD patients have a significant imbalance in the aerobic and anaerobic energy metabolisms in resting state, and a high tendency of anaerobic energy supply mechanism that correlates positively with disease progression. This study highlighted the significance of anaerobic and low-efficiency energy supply pathways in lung injury and linked it to the energy-inflammation-lung ventilatory function and the motion limitation mechanism in COPD patients, which implies a novel therapeutic direction for this devastating disease.
Collapse
Affiliation(s)
- Mingshan Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yifeng Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Runpei Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Teng Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Xiaohua Douglas Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao 999078, China
| | - Yueting Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yingjie Zhen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhifeng Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Haisheng Hu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Divisions of Human Genetics and Pulmonary Medicine, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
8
|
Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases. J Clin Med 2021; 10:jcm10061268. [PMID: 33803835 PMCID: PMC8003245 DOI: 10.3390/jcm10061268] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that some rare respiratory diseases, such as alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) present oxidative stress (OS) and endoplasmic reticulum (ER) stress. Their involvement in these pathologies and the use of antioxidants as therapeutic agents to minimize the effects of OS are discussed in this review.
Collapse
|
9
|
New Laboratory Protocol to Determine the Oxidative Stress Profile of Human Nasal Epithelial Cells Using Flow Cytometry. J Clin Med 2021; 10:jcm10061172. [PMID: 33799667 PMCID: PMC7998408 DOI: 10.3390/jcm10061172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 12/29/2022] Open
Abstract
Several studies have shown the importance of oxidative stress (OS) in respiratory disease pathogenesis. It has been reported that the nasal epithelium may act as a surrogate for the bronchial epithelium in several respiratory diseases involving OS. However, the sample yields obtained from nasal biopsies are modest, limiting the number of parameters that can be determined. Flow cytometry has been widely used to evaluate cellular OS profiles. It has the advantage that analyses can be performed using a small amount of sample. Therefore, we aimed to set up a new method based on flow cytometry to assess the oxidative profile of human nasal epithelial cells which could be used in research on respiratory diseases. Levels of total nitric oxide, superoxide anion, peroxynitrite, and intracellular peroxides were measured. Reduced thiol levels, such as antioxidant-reduced glutathione and oxidative damaged lipids and proteins, were also analysed. The intracellular calcium levels, plasma membrane potential, apoptosis, and percentage of live cells were also studied. Finally, a strategy to evaluate the mitochondrial function, including mitochondrial hydrogen peroxide, superoxide anion, mitochondrial mass, and membrane potential, was set up. Using small amounts of sample and a non-invasive sampling technique, the described method enables the measurement of a comprehensive set of OS parameters in nasal epithelial cells, which could be useful in research on respiratory diseases.
Collapse
|
10
|
Zierold KM, Odoh C. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:401-418. [PMID: 32324165 DOI: 10.1515/reveh-2019-0039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/09/2020] [Indexed: 05/29/2023]
Abstract
Throughout the world, coal is responsible for generating approximately 38% of power. Coal ash, a waste product, generated from the combustion of coal, consists of fly ash, bottom ash, boiler slag, and flue gas desulfurization material. Fly ash, which is the main component of coal ash, is composed of spherical particulate matter with diameters that range from 0.1 μm to >100 μm. Fly ash is predominately composed of silica, aluminum, iron, calcium, and oxygen, but the particles may also contain heavy metals such as arsenic and lead at trace levels. Most nations throughout the world do not consider fly ash a hazardous waste and therefore regulations on its disposal and storage are lacking. Fly ash that is not beneficially reused in products such as concrete is stored in landfills and surface impoundments. Fugitive dust emissions and leaching of metals into groundwater from landfills and surface impoundments may put people at risk for exposure. There are limited epidemiological studies regarding the health effects of fly ash exposure. In this article, the authors provide an overview of fly ash, its chemical composition, the regulations from nations generating the greatest amount of fly ash, and epidemiological evidence regarding the health impacts associated with exposure to fly ash.
Collapse
Affiliation(s)
- Kristina M Zierold
- Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chisom Odoh
- Rehabilitation and Health Services, University of North Texas, Denton, TX, USA
| |
Collapse
|