1
|
Galindo Torres BP, Alcaraz Ortega R, Saiz López P, Adiego Leza MI, Moradillo Renuncio MDM, García Girón C, Grijalba Uche MV. New evidence for miRNA testing in head and neck squamous cell cancer patients. Clin Transl Oncol 2025:10.1007/s12094-025-03854-9. [PMID: 39913046 DOI: 10.1007/s12094-025-03854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE Prognosis of HNSCC has not changed over the last decades. MicroRNAs mediate gene expression and participate in regulating cellular biological processes. Its aberrant expression is an important event in the development of several cancers, including head and neck squamous cell cancer. The aim of the study is to determine if circulating miRNAs are reliable diagnostic indicators and can be used to monitor head and neck cancer. METHODS/PATIENTS An observational, longitudinal, prospective, analytical study was conducted, with a case-control design, in which 37 head and neck squamous cell cancer patients at diagnosis were compared with 30 healthy patients. Blood samples were obtained and free miRNA expression levels of 17 miRNAs were determined by PCR-RT. Follow-up of HNSCC was carried out for one year with blood extractions at 7 days for surgical patients, and 1, 2, 6 and 12 months after finishing treatment for all patients. RESULTS Seventy-eight percent of the participants in HNSCC group and 57% among control group were men. Smokers and alcohol consumers exhibit increased susceptibility to HNSCC, and risk rises to 63.4% (R2 = 0.634) when both factors are combined. HNSCC patients overexpressed miR-21-5p and miR-122, while miR-195-5p is downregulated. Elevated miR-21-5p levels correlates with tumour size and miR-374b-5p, with advanced stage (p = 0.005). CONCLUSION Our findings suggest that the evaluation of certain miRNAs' expression levels in plasma can be used as potential markers for HNSCC diagnosis. Further assays with larger samples could be performed to validate data and establish a cut-off expression level for our proposed miRNAs.
Collapse
Affiliation(s)
| | | | - Patricia Saiz López
- Servicio Anatomía Patológica, Hospital Universitario de Burgos, Burgos, Spain
| | | | | | | | | |
Collapse
|
2
|
Vakili S, Behrooz AB, Whichelo R, Fernandes A, Emwas AH, Jaremko M, Markowski J, Los MJ, Ghavami S, Vitorino R. Progress in Precision Medicine for Head and Neck Cancer. Cancers (Basel) 2024; 16:3716. [PMID: 39518152 PMCID: PMC11544984 DOI: 10.3390/cancers16213716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This paper presents a comprehensive comparative analysis of biomarkers for head and neck cancer (HNC), a prevalent but molecularly diverse malignancy. We detail the roles of key proteins and genes in tumourigenesis and progression, emphasizing their diagnostic, prognostic, and therapeutic relevance. Our bioinformatic validation reveals crucial genes such as AURKA, HMGA2, MMP1, PLAU, and SERPINE1, along with microRNAs (miRNA), linked to HNC progression. OncomiRs, including hsa-miR-21-5p, hsa-miR-31-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-196a-5p, and hsa-miR-200c-3p, drive tumourigenesis, while tumour-suppressive miRNAs like hsa-miR-375 and hsa-miR-145-5p inhibit it. Notably, hsa-miR-155-3p correlates with survival outcomes in addition to the genes RAI14, S1PR5, OSBPL10, and METTL6, highlighting its prognostic potential. Future directions should focus on leveraging precision medicine, novel therapeutics, and AI integration to advance personalized treatment strategies to optimize patient outcomes in HNC care.
Collapse
Affiliation(s)
- Sanaz Vakili
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
| | - Rachel Whichelo
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0J9, Canada; (S.V.); (A.B.B.); (R.W.)
- Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alexandra Fernandes
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Abdul-Hamid Emwas
- Core Lab of NMR, King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marek J. Los
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Rui Vitorino
- Guelph College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
3
|
Hunt A, Torati SR, Slaughter G. Paper-Based DNA Biosensor for Rapid and Selective Detection of miR-21. BIOSENSORS 2024; 14:485. [PMID: 39451697 PMCID: PMC11506571 DOI: 10.3390/bios14100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Cancer is the second leading cause of death globally, with 9.7 million fatalities in 2022. While routine screenings are vital for early detection, healthcare disparities persist, highlighting the need for equitable solutions. Recent advancements in cancer biomarker identification, particularly microRNAs (miRs), have improved early detection. MiR-21 is notably overexpressed in various cancers and can be a valuable diagnostic tool. Traditional detection methods, though accurate, are costly and complex, limiting their use in resource-limited settings. Paper-based electrochemical biosensors offer a promising alternative, providing cost-effective, sensitive, and rapid diagnostics suitable for point-of-care use. This study introduces an innovative electrochemical paper-based biosensor that leverages gold inkjet printing for the quantitative detection of miR-21. The biosensor, aimed at developing cost-effective point-of-care devices for low-resource settings, uses thiolated self-assembled monolayers to immobilize single-stranded DNA-21 (ssDNA-21) on electrodeposited gold nanoparticles (AuNPs) on the printed gold surface, facilitating specific miR-21 capture. The hybridization of ssDNA-21 with miR-21 increases the anionic barrier density, impeding electron transfer from the redox probe and resulting in a current suppression that correlates with miR-21 concentration. The biosensor exhibited a linear detection range from 1 fM to 1 nM miR-21 with a sensitivity of 7.69 fM µA-1 cm2 and a rapid response time (15 min). With a low detection limit of 0.35 fM miR-21 in serum, the biosensor also demonstrates excellent selectivity against interferent species. This study introduces an electrochemical paper-based biosensor that uses gold inkjet printing to precisely detect miR-21, a key biomarker overexpressed in various cancers. This innovative device highlights the potential for cost-effective, accessible cancer diagnostics in underserved areas.
Collapse
Affiliation(s)
- Alexander Hunt
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, USA
| | - Sri Ramulu Torati
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, USA
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA
| |
Collapse
|
4
|
Shirima CA, Bleotu C, Spandidos DA, El-Naggar AK, Pircalabioru GG, Michalopoulos I. Epithelial‑derived head and neck squamous tumourigenesis (Review). Oncol Rep 2024; 52:141. [PMID: 39219259 PMCID: PMC11358675 DOI: 10.3892/or.2024.8800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.
Collapse
Affiliation(s)
- Charles Adolfu Shirima
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Adel K. El-Naggar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Zoughi S, Faridbod F, Moradi S. Rapid enzyme-free detection of miRNA-21 in human ovarian cancerous cells using a fluorescent nanobiosensor designed based on hairpin DNA-templated silver nanoclusters. Anal Chim Acta 2024; 1320:342968. [PMID: 39142796 DOI: 10.1016/j.aca.2024.342968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Cancer is known as one of the main non-communicable diseases and the leading cause of death in the new era. Early diagnosis of cancer requires the identification of special biomarkers. Currently, microRNAs (miRNAs) have attracted the attention of researchers as useful biomarkers for cancer early detection. Hence, various methods have been recently developed for detecting and monitoring miRNAs. Among all miRNAs, detection of miRNA-21 (miR-21) is important because it is abnormally overexpressed in most cancers. Here, a new biosensor based on silver nanoclusters (AgNCs) is introduced for detecting miR-21. RESULTS As a fluorescent probe, a rationally designed hairpin sequence containing a poly-cytosine motif was used to facilitate the formation of AgNCs. A guanine-rich sequence was also employed to enhance the sensing signal. It was found that in the absence of miR-21, adding a guanine-rich sequence to the detecting probe caused only a slight change in the fluorescence emission intensity of AgNCs. While in the presence of miR-21, the emission signal enhanced. A direct correlation was observed between the increase in the fluorescence of AgNCs and the concentration of miR-21. The performance of the proposed biosensor was characterized thoroughly and confirmed. The biosensor detected miR-21 in an applicable linear range from 9 pM to 1.55 nM (LOD: 2 pM). SIGNIFICANCE The designed biosensor was successfully applied for detecting miR-21 in human plasma samples and also in human normal and lung and ovarian cancer cells. This biosensing strategy can be used as a model for detecting other miRNAs. The designed nanobiosensor can measure miR-21 without using any enzymes, with fewer experimental steps, and at a low cost compared to the reported biosensors in this field.
Collapse
Affiliation(s)
- Sheida Zoughi
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Pintea S, Maier P. Mind over chronic pain: A meta-analysis of cognitive restructuring in chronically ill adults. J Psychosom Res 2024; 184:111837. [PMID: 38954864 DOI: 10.1016/j.jpsychores.2024.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE This meta-analysis synthesizes research on the impact of cognitive restructuring on chronic pain intensity, aiming to integrate diverse methodologies and findings while evaluating potential moderators. METHODS Following PRISMA guidelines, we systematically searched multiple databases (PubMed, Web of Science, JSTOR, Sage, Social Science Research Network, PsycArticles, ScienceDirect, and Education Resources Information Center) until July 2023. Studies involving adults (≥18 years) diagnosed with chronic conditions who underwent cognitive restructuring to reduce chronic pain intensity, were included. Eligible studies compared this intervention with a control group. We excluded studies incorporating cognitive restructuring within broader interventions, lacking statistical data, or not written in English. Study quality was assessed using the Cochrane Risk of Bias tool (RoB 2). RESULTS After reviewing 18,312 studies, we selected 11 studies published between 1991 and 2022, involving 693 participants with chronic conditions. A significant large overall effect size was found (d = 0.94, 95% CI 0.48 to 1.40). Moderation analyses revealed significant differences based on sex and study quality, with effects less pronounced among females and more substantial in higher-quality studies. CONCLUSION Despite limitations such as statistical instability due to a small number of studies in certain moderator categories and methodological variability, this meta-analysis highlights the robust effects of cognitive restructuring on chronic pain intensity. The findings are valuable for guiding power calculations and future research expectations. Clinically, these results support the significant effect of cognitive restructuring in both individual and group settings, regardless of age, particularly when facilitated by teams that include psychologists.
Collapse
Affiliation(s)
| | - Paula Maier
- Department of Psychology, Babeș-Bolyai University, Romania.
| |
Collapse
|
7
|
Li CX, Su Y, Wang ZY, Liu H, Gong ZC, Zhao HR. A PRISMA meta-analysis for diagnostic value of microRNA-21 in head and neck squamous cell carcinoma along with bioinformatics research. Oral Maxillofac Surg 2024; 28:739-752. [PMID: 38038839 DOI: 10.1007/s10006-023-01199-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVES The use of miR-21 expression remains vague in diagnosis of head and neck squamous cell carcinoma (HNSCC). This study aimed to systematically evaluate the diagnostic potential of the miR-21 expression in patients with HNSCCs through investigating and summarizing the results reported in the literature. METHODS Extant medical databases were examined for articles of clinical study assessing the miR-21 expression in HNSCC cases, published in the past 20 years. Bioinformatics research was also performed for finding miR-21 targets differentially expressed in HNSCC so as to present their biological behaviors. RESULTS Our meta-analysis comprised 11 studies including 622/450 cases in HNSCC/control group. Forest plots displayed miR-21 which possessed significantly good specificity (0.76, p < 0.001) and sensitivity (0.80, p < 0.001). Diagnostic odds ratio was 2.46 (95% CI 1.87-3.24). Positive and negative likelihood ratio was 3.40 (95% CI 1.94-5.97) and 0.26 (95% CI 0.18-0.38), respectively. Area under the receiver operating characteristic curve was 0.85. CONCLUSION This study is the highest level of evidence presently available in diagnosing HNSCC. This PRISMA meta-analysis indicated that the pooled results were robust, confirming the oncogenic potential of miR-21 that could be used successfully as a screening biomarker in HNSCC patients. Specifically, the overexpression of miR-21 in these patients presents a worse survival outcome.
Collapse
Affiliation(s)
- Chen-Xi Li
- Oncological Department of Oral and Maxillofacial Surgery, Xinjiang Medical University Affiliated First Hospital, No. 137 Liyushan South Road, Urumqi, 830054, China.
- School of Stomatology, Xinjiang Medical University, Urumqi, 830011, China.
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, People's Republic of China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ying Su
- College of Software Engineering, Xinjiang University, Urumqi, 830046, China
| | - Zheng-Ye Wang
- Center for Disease Control and Prevention, Xinjiang Production and Construction Corps, Urumqi, 830092, China
| | - Hui Liu
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, 200003, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, 200433, China
| | - Zhong-Cheng Gong
- Oncological Department of Oral and Maxillofacial Surgery, Xinjiang Medical University Affiliated First Hospital, No. 137 Liyushan South Road, Urumqi, 830054, China.
- School of Stomatology, Xinjiang Medical University, Urumqi, 830011, China.
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, People's Republic of China.
| | - Hua-Rong Zhao
- The First Ward of Oncological Department, Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| |
Collapse
|
8
|
Sayyed AA, Vasudevan SS, Ahmad S, Sarker P, Prasad A, Khandelwalv S, Choudhary I, Kandrikar TY, Verma A, Ali SA, Gondaliya P, Arya N. Exosomal microRNA for diagnosis and prognosis of head and neck cancer. DIAGNOSTIC, PROGNOSTIC, AND THERAPEUTIC ROLE OF MICRORNAS IN HEAD AND NECK CANCER 2024:221-236. [DOI: 10.1016/b978-0-443-15968-8.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Dioguardi M, Spirito F, Iacovelli G, Sovereto D, Laneve E, Laino L, Caloro GA, Nabi AQ, Ballini A, Lo Muzio L, Troiano G. The Potential microRNA Prognostic Signature in HNSCCs: A Systematic Review. Noncoding RNA 2023; 9:54. [PMID: 37736900 PMCID: PMC10514860 DOI: 10.3390/ncrna9050054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are often diagnosed at advanced stages, incurring significant high mortality and morbidity. Several microRNAs (miRs) have been identified as pivotal players in the onset and advancement of HNSCCs, operating as either oncogenes or tumor suppressors. Distinctive miR patterns identified in tumor samples, as well as in serum, plasma, or saliva, from patients have significant clinical potential for use in the diagnosis and prognosis of HNSCCs and as potential therapeutic targets. The aim of this study was to identify previous systematic reviews with meta-analysis data and clinical trials that showed the most promising miRs in HNSCCs, enclosing them into a biomolecular signature to test the prognostic value on a cohort of HNSCC patients according to The Cancer Genome Atlas (TCGA). Three electronic databases (PubMed, Scopus, and Science Direct) and one registry (the Cochrane Library) were investigated, and a combination of keywords such as "signature microRNA OR miR" AND "HNSCC OR LSCC OR OSCC OR oral cancer" were searched. In total, 15 systematic literature reviews and 76 prognostic clinical reports were identified for the study design and inclusion process. All survival index data were extracted, and the three miRs (miR-21, miR-155, and miR-375) most investigated and presenting the largest number of patients included in the studies were selected in a molecular biosignature. The difference between high and low tissue expression levels of miR-21, miR-155, and miR-375 for OS had an HR = 1.28, with 95% CI: [0.95, 1.72]. In conclusion, the current evidence suggests that miRNAs have potential prognostic value to serve as screening tools for clinical practice in HNSCC follow-up and treatment. Further large-scale cohort studies focusing on these miRNAs are recommended to verify the clinical utility of these markers individually and/or in combination.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Giovanna Iacovelli
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Enrica Laneve
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy;
| | - Giorgia Apollonia Caloro
- Unità Operativa Nefrologia e Dialisi, Presidio Ospedaliero Scorrano, ASL (Azienda Sanitaria Locale) Lecce, Via Giuseppina Delli Ponti, 73020 Scorrano, Italy;
| | - Ari Qadir Nabi
- Biology Department, Salahaddin University-Erbil, Erbil 44001, Kurdistan, Iraq;
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| |
Collapse
|
10
|
Kabzinski J, Kucharska-Lusina A, Majsterek I. RNA-Based Liquid Biopsy in Head and Neck Cancer. Cells 2023; 12:1916. [PMID: 37508579 PMCID: PMC10377854 DOI: 10.3390/cells12141916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck cancer (HNC) is a prevalent and diverse group of malignancies with substantial morbidity and mortality rates. Early detection and monitoring of HNC are crucial for improving patient outcomes. Liquid biopsy, a non-invasive diagnostic approach, has emerged as a promising tool for cancer detection and monitoring. In this article, we review the application of RNA-based liquid biopsy in HNC. Various types of RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), circular RNA (circRNA) and PIWI-interacting RNA (piRNA), are explored as potential biomarkers in HNC liquid-based diagnostics. The roles of RNAs in HNC diagnosis, metastasis, tumor resistance to radio and chemotherapy, and overall prognosis are discussed. RNA-based liquid biopsy holds great promise for the early detection, prognosis, and personalized treatment of HNC. Further research and validation are necessary to translate these findings into clinical practice and improve patient outcomes.
Collapse
Affiliation(s)
- Jacek Kabzinski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
11
|
Ye B, Duan Y, Zhou M, Wang Y, Lai Q, Yue K, Cao J, Wu Y, Wang X, Jing C. Hypoxic tumor-derived exosomal miR-21 induces cancer-associated fibroblast activation to promote head and neck squamous cell carcinoma metastasis. Cell Signal 2023; 108:110725. [PMID: 37230199 DOI: 10.1016/j.cellsig.2023.110725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Both microRNA-21-5p (miR-21) and the tumor microenvironment, including hypoxia and cancer-associated fibroblasts (CAFs), play a vital role in head and neck squamous cell carcinoma (HNSCC), but whether there is an interaction and the specific regulatory mechanism between them in the process of metastasis is still unclear. In this study, we aimed to elucidate the connection and regulatory mechanism of miR-21, hypoxia, and CAFs in HNSCC metastasis. METHODS The underlying mechanisms of HIF1α regulating miR-21 transcription, promoting exosome secretion, CAFs activation, tumor invasion, and lymph node metastasis were determined through quantitative real-time PCR, immunoblotting, transwell, wound healing, immunofluorescence, ChIP, electron microscopy, nanoparticle tracking analysis, dual-luciferase reporter assay, co-culture model and xenografts experiments. RESULTS MiR-21 promoted the invasion and metastasis of HNSCC in vitro and in vivo, whereas HIF1α knockdown inhibited these processes. HIF1α upregulated transcription of miR-21 and promoted the release of exosomes from HNSCC cells. Exosomes derived from hypoxic tumor cells were rich in miR-21, which induced NFs activation towards CAFs by targeting YOD1. Knockdown the expression level of miR-21 in CAFs prevented lymph node metastasis in HNSCC. CONCLUSION Hypoxic tumor cell-derived exosomal miR-21 might be a therapeutic target to prevent or delay HNSCC invasion and metastasis.
Collapse
Affiliation(s)
- Beibei Ye
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yuansheng Duan
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Mengqian Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui, China
| | - Yuxuan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Qingchuan Lai
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Kai Yue
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Jiayan Cao
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China
| | - Yansheng Wu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| | - Xudong Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| | - Chao Jing
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin 300060, China.
| |
Collapse
|
12
|
MiR-29c-3p/C1QTNF6 Restrains the Angiogenesis and Cell Proliferation, Migration and Invasion in Head and Neck Squamous Cell Carcinoma. Mol Biotechnol 2022; 65:913-921. [DOI: 10.1007/s12033-022-00591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
13
|
Global microRNA expression profile in laryngeal carcinoma unveils new prognostic biomarkers and novel insights into field cancerization. Sci Rep 2022; 12:17051. [PMID: 36224266 PMCID: PMC9556831 DOI: 10.1038/s41598-022-20338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022] Open
Abstract
Laryngeal carcinoma is still a worldwide burden that has shown no significant improvement during the last few decades regarding definitive treatment strategies. The lack of suitable biomarkers for personalized treatment protocols and delineating field cancerization prevents further progress in clinical outcomes. In the light of this perspective, MicroRNAs could be promising biomarkers both in terms of diagnostic and prognostic value. The aim of this prospective study is to find strong prognostic microRNA biomarkers for advanced laryngeal carcinoma and molecular signatures of field cancerization. Sixty patients were enrolled and four samples were collected from each patient: tumor surface and depth, peritumor normal mucosa, and control distant laryngeal mucosa. Initially, a global microRNA profile was conducted in twelve patients from the whole cohort and subsequently, we validated a selected group of 12 microRNAs with RT-qPCR. The follow-up period was 24 months (SD ± 13 months). Microarray expression profile revealed 59 dysregulated microRNAs. The validated expression levels of miR-93-5p (χ2(2) = 4.68, log-rank p = 0.03), miR-144-3p (χ2(2) = 4.53, log-rank p = 0.03) and miR-210-3p (χ2(2) = 4.53, log-rank p = 0.03) in tumor samples exhibited strong association with recurrence-free survival as higher expression levels of these genes predict worse outcome. Tumor suppressor genes miR-144-3p (mean rank 1.58 vs 2.14 vs 2.29, p = 0.000) and miR-145-5p (mean rank 1.57 vs 2.15 vs 2.28, p = 0.000) were significantly dysregulated in peritumor mucosa with a pattern of expression consistent with paired tumor samples thus revealing a signature of field cancerization in laryngeal carcinoma. Additionally, miR-1260b, miR-21-3p, miR-31-3p and miR-31-5p were strongly associated with tumor grade. Our study reports the first global microRNA profile specifically in advanced laryngeal carcinoma that includes survival analysis and investigates the molecular signature of field cancerization. We report two strong biomarkers of field cancerization and three predictors for recurrence in advance stage laryngeal cancer.
Collapse
|
14
|
Sekaran S, Pitchaiah S, Ganapathy D. Can miR-21 be considered as a potential biomarker and a therapeutic target in oral cancer? Oral Oncol 2022; 131:105973. [PMID: 35738155 DOI: 10.1016/j.oraloncology.2022.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India.
| | - Sivaperumal Pitchaiah
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
15
|
Gebrie A. Disease progression role as well as the diagnostic and prognostic value of microRNA-21 in patients with cervical cancer: A systematic review and meta-analysis. PLoS One 2022; 17:e0268480. [PMID: 35895593 PMCID: PMC9328569 DOI: 10.1371/journal.pone.0268480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Introduction Cervical cancer is the fourth commonest and the fourth leading cause of cancer death in females globally. The upregulated expression of microRNA-21 in cervical cancer has been investigated in numerous studies, yet given the inconsistency on some of the findings, a systematic review and meta-analysis is needed. Therefore, the aim of this systematic review and meta-analysis is to investigate the role in disease progression as well as the diagnostic and prognostic value of microRNA-21 in patients with cervical cancer. Methods Literature search was carried out through visiting several electronic databases including PubMed/MEDLINE/ PubMed Central, Web of Science, Embase, WorldCat, DOAJ, ScienceDirect, and Google Scholar. After extraction, data analysis was carried out using Rev-Man 5.3, STATA 15.0 and Meta-disk 1.4. I2 and meta-bias statistics assessed heterogeneity and publication bias of the included studies, respectively. The area under summary receiver operating characteristic curve and other diagnostic indexes were used to estimate diagnostic accuracy. Result A total of 53 studies were included for this systematic review and meta-analysis. This study summarized that microRNA-21 targets the expression of numerous genes that regulate their subsequent downstream signaling pathways which promote cervical carcinogenesis. The targets addressed in this study included TNF-α, CCL20, PTEN RasA1, TIMP3, PDCD-4, TPM-1, FASL, BTG-2, GAS-5, and VHL. In addition, the meta-analysis of reports from 6 eligible studies has demonstrated that the overall area under the curve (AUC) of summary receiver operating characteristic (SROC) of microRNA-21 as a diagnostic accuracy index for cervical cancer was 0.80 (95% CI: 0.75, 0.86). In addition, evidence from studies revealed that upregulated microRNA-21 led to worsening progression and poor prognosis in cervical cancer patients. Conclusion microRNA-21 is an oncogenic microRNA molecule playing a key role in the development and progression of cervical malignancy. It has good diagnostic accuracy in the diagnosis of cervical cancer. In addition, the upregulation of microRNA-21 could predict a worse outcome in terms of prognosis in cervical cancer patients.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
- * E-mail:
| |
Collapse
|
16
|
Deng ZM, Chen GH, Dai FF, Liu SY, Yang DY, Bao AY, Cheng YX. The clinical value of miRNA-21 in cervical cancer: A comprehensive investigation based on microarray datasets. PLoS One 2022; 17:e0267108. [PMID: 35486636 PMCID: PMC9053781 DOI: 10.1371/journal.pone.0267108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
Previous work has demonstrated that the expression of microRNA-21 (miR-21) is implicated in cervical cancer (CC). However, little is known regarding its associations with clinical parameters. We first conducted a meta-analysis using data from Gene Expression Omnibus (GEO) microarrays and The Cancer Genome Atlas (TCGA). Then, enrichment analysis and hub gene screening were performed by bioinformatic methods. Finally, the role of the screened target genes in CC was explored. According to the meta-analysis, the expression of miR-21 in cancer tissues was higher than in adjacent nontumor tissues (P < 0.05). In addition, 46 genes were predicted as potential targets of miR-21. After enrichment analyses, it was detected that these genes were enriched in various cancer pathways, including the phosphatidylinositol signaling system and mammalian target of rapamycin (mTOR) signaling pathway. In this study, bioinformatic tools and meta-analysis validated that miR-21 may function as a highly sensitive and specific marker for the diagnosis of CC, which may provide a novel approach to the diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gan-Hong Chen
- Department of Pathology, The People’s Hospital of Honghu, Honghu, Hubei, China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong-Yong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - An-Yu Bao
- Department of Clinical laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (AYB); (YXC)
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (AYB); (YXC)
| |
Collapse
|
17
|
Dysregulation of miR-21-5p, miR-93-5p, miR-200c-3p and miR-205-5p in Oral Squamous Cell Carcinoma: A Potential Biomarkers Panel? Curr Issues Mol Biol 2022; 44:1754-1767. [PMID: 35723379 PMCID: PMC9164081 DOI: 10.3390/cimb44040121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is considered the sixth most common cancer worldwide. To reduce the high mortality of the disease, sensitive and specific diagnostic and prognostic biomarkers are urgently needed. Non-coding RNA, microRNAs (miRNAs), which are short length non-coding transcripts, or long non-coding RNA (lncRNA) seem to be potential biomarkers, considering that they have an important role in regulation of cell fate being involved in a wide range of biological processes. Literature data emphasized the important role of these transcripts as a biomarker for diagnosis and prognosis in oral squamous cell carcinoma. Therefore, we have evaluated the expression levels of a panel of four miRNAs (miR-21-5p, miR-93-5p, miR-200c-3p and miR-205-5p) and H19, MALAT1 by quantitative real-time PCR (qRT-PCR) from 33 fresh frozen tissues and 33 normal adjacent tissues. Our date revealed miR-21-5p and miR-93-5p to be upregulated, while miR-200c-3p and miR-205-5p to be downregulated. Regarding the long non-coding RNAs, H19 and MALAT1, were also downregulated. We also investigated the expression of BCL2, which is another important gene correlated to non-coding RNAs investigated by as, and it was also under-expressed. Additional validation step at protein level was done for KI67, TP53 and BCL2. In our patient cohort no correlation with clinical stage and smoking status was observed. The results of the present study indicated the important role of miR-21-5p, miR-93-5p, miR-200c-3p, miR-205-5p and H19 in OSCC. Differential expression of these transcripts at sub-sites, may serve as a diagnostic marker with further elaboration on a larger sample size. Additional studies should be conducted to confirm the results, particularly the interconnection with coding and non-coding genes.
Collapse
|
18
|
Li JX, Li Y, Xia T, Rong FY. miR-21 Exerts Anti-proliferative and Pro-apoptotic Effects in LPS-induced WI-38 Cells via Directly Targeting TIMP3. Cell Biochem Biophys 2021; 79:781-790. [PMID: 33942238 DOI: 10.1007/s12013-021-00987-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease, which was caused by a complex interplay of inflammatory responses and chronic damage. miR-21 is increased in patients with IPF, but its function in the embryonic lung-derived diploid fibroblasts cells subjected to LPS is elusive. miRNA expression profile was obtained from GEO database and target genes of miRNAs were forecasted by TargetScan. To mimic the LPS-induced injury, different concentrations of LPS were applied to treat WI-38 cells. Functional in vitro experiments were conducted to examine the role of miR-21 and TIMP3. Luciferase report assay was performed to verify the relationship between miR-21 and TIMP3. qRT-PCR, western blotting, and ELISA were conducted to detect the levels of the related miRNAs, proteins, and inflammatory factors. miR-21 presented higher levels in interstitial pneumonia patients and LPS-induced WI-38 cells. Overexpression of miR-21 was negatively correlated with the proliferative capability of LPS-treated WI-38 cells. miR-21 directly targets TIMP3. TIMP3 restored the suppressive impact of miR-21 mimic on the proliferation, while TIMP3 alleviated the promoting impact of miR-21 mimic on the apoptosis of WI-38 cells treated by LPS. miR-21 inhibited Bcl-2 but increased Bax, cleaved caspase-3, and cleaved caspase-9. Besides, miR-21 elevated the levels of IL-6 and IL-β but reduced the IL-10, which were weakened by TIMP3. Totally, miR-21 aggravated the LPS-induced lung injury and modulated inflammatory responses by targeting TIMP3.
Collapse
Affiliation(s)
- Jin-Xiu Li
- Department of ICU, The Second People's Hospital of Liaocheng, Linqing, Shandong, China.
- Department of ICU, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China.
| | - You Li
- Department of ICU, Linqing People's Hospital, Linqing, Shandong, China
| | - Tian Xia
- Department of Pharmacy, The Second People's Hospital of Liaocheng, Linqing, Shandong, China
- Department of Pharmacy, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China
| | - Feng-Yan Rong
- Department of ICU, The Second People's Hospital of Liaocheng, Linqing, Shandong, China
- Department of ICU, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China
| |
Collapse
|
19
|
Vahabi M, Blandino G, Di Agostino S. MicroRNAs in head and neck squamous cell carcinoma: a possible challenge as biomarkers, determinants for the choice of therapy and targets for personalized molecular therapies. Transl Cancer Res 2021; 10:3090-3110. [PMID: 35116619 PMCID: PMC8797920 DOI: 10.21037/tcr-20-2530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) are referred to a group of heterogeneous cancers that include structures of aerodigestive tract such as oral and nasal cavity, salivary glands, oropharynx, pharynx, larynx, paranasal sinuses, and local lymph nodes. HNSCC is characterized by frequent alterations of several genes such as TP53, PIK3CA, CDKN2A, NOTCH1, and MET as well as copy number increase in EGFR, CCND1, and PIK3CA. These genomic alterations play a role in terms of resistance to chemotherapy, molecular targeted therapy, and prediction of patient outcome. MicroRNAs (miRNAs) are small single-stranded noncoding RNAs which are about 19-25 nucleotides. They are involved in the tumorigenesis of HNSCC including dysregulation of cell survival, proliferation, cellular differentiation, adhesion, and invasion. The discovery of the stable presence of the miRNAs in all human body made them attractive biomarkers for diagnosis and prognosis or as targets for novel therapeutic ways, enabling personalized treatment for HNSCC. In recent times the number of papers concerning the characterization of miRNAs in the HNSCC tumorigenesis has grown a lot. In this review, we discuss the very recent studies on different aspects of miRNA dysregulation with their clinical significance and we apologize for the many past and most recent works that have not been mentioned. We also discuss miRNA-based therapy that are being tested on patients by clinical trials.
Collapse
Affiliation(s)
- Mahrou Vahabi
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Giovanni Blandino
- IRCCS Regina Elena National Cancer Institute, Oncogenomic and Epigenetic Laboratory, via Elio Chianesi, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, University “Magna Graecia” of Catanzaro, viale Europa, Catanzaro, Italy
| |
Collapse
|
20
|
Shakeri A, Ghanbari M, Tasbandi A, Sahebkar A. Regulation of microRNA-21 expression by natural products in cancer. Phytother Res 2021; 35:3732-3746. [PMID: 33724576 DOI: 10.1002/ptr.7069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products have been of much interest in research studies owing to their wide pharmacological applications, chemical diversity, low side effects, and multitarget activities. Examples of these compounds include matrine, sulforaphane, silibinin, curcumin, berberin, resveratrol, and quercetin. Some of the present anticancer drugs, such as taxol, vincristine, vinblastine, and doxorubicin are also derived from natural products. The anti-carcinogenic effects of these products are partly mediated through modulation of microRNA-21 (miR-21) expression. To date, numerous downstream targets of miR-21 have been recognized, which include phosphatase and tensin homolog (PTEN), ras homolog gene family member B (RHOB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), programmed cell death 4 (PDCD4), signal transducer and activator of transcription (STAT)-3, and nuclear factor kappa B (NF-κB) pathways. These signaling pathways, their regulation by oncomiR-21 in cancer, and the modulating impact of natural products are the main focus of this review.
Collapse
Affiliation(s)
- Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Rajthala S, Dongre H, Parajuli H, Min A, Nginamau ES, Kvalheim A, Lybak S, Sapkota D, Johannessen AC, Costea DE. Combined In Situ Hybridization and Immunohistochemistry on Archival Tissues Reveals Stromal microRNA-204 as Prognostic Biomarker for Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13061307. [PMID: 33804049 PMCID: PMC8002032 DOI: 10.3390/cancers13061307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary In addition to the transformation of epithelial cells, dysfunction of stroma is crucial in carcinogenesis; cancer-associated stroma can regulate the phenotype of cancer cells and thereby influence the clinical outcome. Our study aimed to investigate the correlation of stromal miR-204 with progression of oral squamous cell carcinoma (OSCC) and assert its clinical utility. We first established a chromogen-based method that combined immunohistochemistry and in situ hybridization for exact delimitation of stroma from the tumor islands and concomitant visualization of miRs, and have developed a guide to digital miR quantification using the publicly available tool ImageJ and the licensed software Aperio ImageScope. We have then applied the method for investigating stromal miR-204 as a putative prognostic biomarker on an OSCC cohort and identified expression of miR204 in the stroma at tumor front as an independent prognostic biomarker for this disease. Abstract Micro-RNAs (miRs) are emerging as important players in carcinogenesis. Their stromal expression has been less investigated in part due to lack of methods to accurately differentiate between tumor compartments. This study aimed to establish a robust method for dual visualization of miR and protein (pan-cytokeratin) by combining chromogen-based in situ hybridization (ISH) and immunohistochemistry (IHC), and to apply it to investigate stromal expression of miR204 as a putative prognostic biomarker in oral squamous cell carcinoma (OSCC). Four different combinations of methods were tested and ImageJ and Aperio ImageScope were used to quantify miR expression. All four dual ISH-IHC methods tested were comparable to single ISH in terms of positive pixel area percentage or integrated optical density of miRs staining. Based on technical simplicity, one of the methods was chosen for further investigation of miR204 on a cohort of human papilloma virus (HPV)-negative primary OSCC (n = 169). MiR204 stromal expression at tumor front predicted recurrence-free survival (p = 0.032) and overall survival (p = 0.036). Multivariate Cox regression further confirmed it as an independent prognostic biomarker in OSCC. This study provides a methodological platform for integrative biomarker studies based on simultaneous detection and quantification of miRs and/or protein and reveals stromal miR204 as a prognostic biomarker in OSCC.
Collapse
Affiliation(s)
- Saroj Rajthala
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway; (S.R.); (H.D.); (H.P.); (E.S.N.); (A.C.J.)
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Harsh Dongre
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway; (S.R.); (H.D.); (H.P.); (E.S.N.); (A.C.J.)
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Himalaya Parajuli
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway; (S.R.); (H.D.); (H.P.); (E.S.N.); (A.C.J.)
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Anjie Min
- Department of Oral Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha 410083, China;
| | - Elisabeth Sivy Nginamau
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway; (S.R.); (H.D.); (H.P.); (E.S.N.); (A.C.J.)
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Arild Kvalheim
- Oral Surgery Private Referral Practice “Tannteam”, N-5221 Nesttun, Norway;
| | - Stein Lybak
- Head and Neck Clinic, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Dipak Sapkota
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, N-0316 Oslo, Norway;
| | - Anne Christine Johannessen
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway; (S.R.); (H.D.); (H.P.); (E.S.N.); (A.C.J.)
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway; (S.R.); (H.D.); (H.P.); (E.S.N.); (A.C.J.)
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
- Correspondence: ; Tel.: +47-5597-2565
| |
Collapse
|
22
|
The Emerging Role of Exosomes in Diagnosis, Prognosis, and Therapy in Head and Neck Cancer. Int J Mol Sci 2020; 21:ijms21114072. [PMID: 32517240 PMCID: PMC7312915 DOI: 10.3390/ijms21114072] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes, the smallest group of extracellular vesicles, carry proteins, miRNA, mRNA, DNA, and lipids, which they efficiently deliver to recipient cells, generating a communication network. Exosomes strongly contribute to the immune suppressive tumor microenvironment of head and neck squamous cell carcinomas (HNSCC). Isolation of exosomes from HNSCC cell culture or patient’s plasma allows for analyzing their molecular cargo and functional role in immune suppression and tumor progression. Immune affinity-based separation of different exosome subsets, such as tumor-derived or T cell-derived exosomes, from patient’s plasma simultaneously informs about tumor status and immune dysfunction. In this review, we discuss the recent understanding of how exosomes behave in the HNSCC tumor microenvironment and why they are promising liquid biomarkers for diagnosis, prognosis, and therapy in HNSCC.
Collapse
|
23
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Komsta Ł, Kołodziej P, Chmiel P, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Dysregulations of MicroRNA and Gene Expression in Chronic Venous Disease. J Clin Med 2020; 9:jcm9051251. [PMID: 32344947 PMCID: PMC7287878 DOI: 10.3390/jcm9051251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic venous disease (CVD) is a vascular disease of lower limbs with high prevalence worldwide. Pathologic features include varicose veins, venous valves dysfunction and skin ulceration resulting from dysfunction of cell proliferation, apoptosis and angiogenesis. These processes are partly regulated by microRNA (miRNA)-dependent modulation of gene expression, pointing to miRNA as a potentially important target in diagnosis and therapy of CVD progression. The aim of the study was to analyze alterations of miRNA and gene expression in CVD, as well as to identify miRNA-mediated changes in gene expression and their potential link to CVD development. Using next generation sequencing, miRNA and gene expression profiles in peripheral blood mononuclear cells of subjects with CVD in relation to healthy controls were studied. Thirty-one miRNAs and 62 genes were recognized as potential biomarkers of CVD using DESeq2, Uninformative Variable Elimination by Partial Least Squares (UVE-PLS) and ROC (Receiver Operating Characteristics) methods. Regulatory interactions between potential biomarker miRNAs and genes were projected. Functional analysis of microRNA-regulated genes revealed terms closely related to cardiovascular diseases and risk factors. The study shed new light on miRNA-dependent regulatory mechanisms involved in the pathology of CVD. MicroRNAs and genes proposed as CVD biomarkers may be used to develop new diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.K.); (P.C.)
| | - Karol P. Ruszel
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Jacek Bogucki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Łukasz Komsta
- Chair and Department of Medicinal Chemistry, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.K.); (P.C.)
| | - Paulina Chmiel
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.K.); (P.C.)
| | - Tomasz Zubilewicz
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.B.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland; (D.P.Z.); (P.K.); (P.C.)
- Correspondence: ; Tel.: +48-81-448-7232
| |
Collapse
|
24
|
Doukas SG, Vageli DP, Lazopoulos G, Spandidos DA, Sasaki CT, Tsatsakis A. The Effect of NNK, A Tobacco Smoke Carcinogen, on the miRNA and Mismatch DNA Repair Expression Profiles in Lung and Head and Neck Squamous Cancer Cells. Cells 2020; 9:E1031. [PMID: 32326378 PMCID: PMC7226174 DOI: 10.3390/cells9041031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/04/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Tobacco smoking is a common risk factor for lung cancer and head and neck cancer. Molecular changes such as deregulation of miRNA expression have been linked to tobacco smoking in both types of cancer. Dysfunction of the Mismatch DNA repair (MMR) mechanism has also been associated with a poor prognosis of these cancers, while a cross-talk between specific miRNAs and MMR genes has been previously proposed. We hypothesized that exposure of lung and head and neck squamous cancer cells (NCI and FaDu, respectively) to tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is capable of altering the expression of MSH2 and MLH1, key MMR components, by promoting specific miRNA deregulation. We found that either a low (1 μM) or high (2 μM) dose of NNK induced significant upregulation of "oncomirs" miR-21 and miR-155 and downregulation of "tumor suppressor" miR-422a, as well as the reduction of MMR protein and mRNA expression, in NCI and FaDu, compared to controls. Inhibition of miR-21 restored the NNK-induced reduced MSH2 phenotype in both NCI and FaDu, indicating that miR-21 might contribute to MSH2 regulation. Finally, NNK exposure increased NCI and FaDu survival, promoting cancer cell progression. We provide novel findings that deregulated miR-21, miR-155, and miR-422a and MMR gene expression patterns may be valuable biomarkers for lung and head and neck squamous cell cancer progression in smokers.
Collapse
Affiliation(s)
- Sotirios G. Doukas
- Department of Forensic Sciences and Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.G.D.); (A.T.)
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - Dimitra P. Vageli
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - George Lazopoulos
- Department of Cardiothoracic Surgery, Medical School, University of Crete, 71110 Heraklion, Greece;
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71110 Heraklion, Greece;
| | - Clarence T. Sasaki
- Department of Surgery, The Yale Larynx Laboratory, New Haven, CT 06510, USA;
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece; (S.G.D.); (A.T.)
| |
Collapse
|